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1 Infinite Galois theory

An algebraic field extension L/K is called Galois, if it is normal and separable. For
this, L/K does not need to have finite degree. For example, for a finite field I, with p
elements (p a prime number), the algebraic closure F, is Galois over F,, and has infinite
degree. We define in this general situation

Definition 1.1 Let L/K be a Galois extension. Then the Galois group of L over K
is defined as Gal(L/K) := Autg(L) = {0 : L — L | o field automorphisms, o(z) =
x for all z € K}.

But the main theorem of Galois theory (correspondence between all subgroups of
Gal(L/K) and all intermediate fields of L/K) only holds for finite extensions! To
obtain the correct answer, one needs a topology on Gal(L/K):

Definition 1.2 Let L/K be a Galois extension. The Krull topology on G = Gal(L/K)
is defined by the fact that for every element o € GG the cosets

o-Gal(L/K') , K'/K finite,

form a basis of neighborhoods of o.

This gives in fact a topology: By standard definitions of topology we have to show: Let
o Gal(L/K’) and 7 Gal(L/K") be as given above, and let p € o Gal(L/K')N7 Gal(L/K").
Then there is a finite extension K" /K with

pGal(L/K") C o Gal(L/K') N7 Gal(L/K").

But this holds for K = K’ - K” (the compositum), since we have Gal(L/K") =
Gal(L/K")NGal(L/K") and since p € o Gal(L/K"), we have p Gal(L/K") C o Gal(L/K’),
similarly we have p Gal(L/K") C 7 Gal(L/K").

Lemma 1.3 With this topology, G = Gal(L/K) is a topological group, i.e., the
multiplication
w:GxG—=G, (o,7)—o0T

and forming the inverse
1:G—=G, oot

are continuous maps.

Proof Left to the reader.

Theorem 1.4 Endowed with the Krull topology, G = Gal(L/K) is compact and totally
disconnected (i.e., for every ¢ € G, the connected component of ¢ is equal to {o}).

For the proof we note:



Remarks 1.5 (a) Let H be a topological group (see . Then, for every 7 € H the
left translation by 7
L,:H—H , ow—r710

is a homeomorphism, and the same holds for the right translation by 7 R, : 0 — o7). In
fact, L, = p(7,—) is continuous, with continuous inverse L,-1. Therefore 7 establishes
bijections

= { neighborhoods of U, = { neighborhood of 7}

1
c( C(r)

where C'(0) denotes the connected component of an element o.

}
)

_>
%

(b) If L/K is finite, then the Krull topology on Gal(L/K) is the discrete topology (since
{o} is open for every o € Gal(L/K), therefore for every subset).

Lemma 1.6 The map

h: Gal(L/K) — I1 Gal(K'/K)
K'/Kfinite, normal
K'CL
o > (o15c7)

is injective with closed image
G = {(og) € [1Gal(K'/K) | for K’ C K" we have ogn|x = og} .
Definition 1.7 We call a family (o) in Gal(L/K) compatible, if it lies in G.
The map
G5 a
is a homeomorphism. (Here [] Gal(K’/K) carries the product topology with respect

to the discrete topologies on the finite groups Gal(K’/K)), and G carries the subgroup
topology in this group).

Recollection 1.8 Let (X;);c; be a family of topological spaces. The product topology

on
X =11 X;
iel
is the topology, for which the sets
U=1IU;
iel

with U; C X; open for all i and U; = X; for almost ¢ form a basis (i.e., the open sets are
unions of these sets). A subbasis is given by the sets

H Xz X Uj
i€l
i#



for j € I and U; C X; open (i.e., finite intersections of these sets form a basis of the
topology).

This product topology is the coarsest topology, for which all projections

are continuous. If Y is a topological space, then a map f : Y — [] X, is continuous if
iel

and only if all component maps f; = p;o f : Y — X; are continuous. This gives the

universal property

Abbcont(YVa H Xz) :> H Abbcont(Y7 Xz) ;

i€l icl
where Abby,: (Y, X) denotes the set of continuous maps f:Y — X.

Proof of Lemma : Let (L;)ier be the family of the intermediate fields L; of L/K
with L;/K finite and Galois. Hence we consider the map

h: G = Gal(L/K) — [] Gal(Li/K) = H

el

(a) h is injective: If oy, = id for all ¢ € I, then we have ox» = id for all subfields K’
of L/K which are finitely over K (consider the smallest normal field N(K') D K' D K,
which is one of the fields of L;). Thus we have o = id.

(b) (G) = G : The inclusion h(G) C G is obvious. On the other hand, if (o) is a
compatible family, then we can define o € Gal(L/K) by setting o(x) = o, (z) for z € L;

(note that U L; = L, see above).
iel

(¢) To show that G is closed, we show that the complement of G is open. Let (0;) €
[1 Gal(L;/K), (0;) ¢ G, hence not compatible. Therefore there are j, k € I with L; C Ly,
icl

but Ulej # 0. Then the set

{(7) € I Gal(Li/K) | 7, = 03,70 = )
1€
is an open neighborhood of (¢;), which lies in the complement of G.

(d) h is continuous: The sets

U= Uj,aj = H Gal(LZ/K) X {O'j},
i#]
for j € I and 0; € Gal(L;/K) form a subbasis of the product topology. If o; has no inverse
image in Gal(L/K), then h='(U) is empty, therefore open (later we will see that this
case does not occur). If o is a preimage of 0, in Gal(L/K), then h™'(U) = o - Gal(L/L;)

is open.



(e) h maps open onto the image: h(c Gal(L/L;)) = h(G) N U, is open for o; = 0|Lj.

Therefore h is a homeomorphism and we proved Lemma [1.6]

From this now follows the first claim in Theorem 1.4, since ] Gal(L;/K) is compact
iel

by Tychonov’s Theorem (see i.e. Lang ‘Real Analysis’ II §3 Theorem 3), and G is

closed in this. For the second claim it suffices to show that H = [] Gal(L;/K) is totally
el
disconnected.

For this we show that Z(1), the connected component of 1 in H, is equal to {1}
(from this and it follows that Z(c) = o for all ¢ € G). Obviously, Z(1) lies in
every set M which contains the unit and is simultaneously open and closed (from
Z(1) = (Z()NnM)U (Z(1) n CM) it follows that Z(1) N CM = (), since Z(1) is
connected and Z(1) N M # (). Hence Z(1) lies in the intersection of all subgroups
Ui = 1;[ Gal(L;/K) x {1}. But this intersection is {1}.

i#]

Now we obtain

Theorem 1.9 (Main theorem of Galois theory for infinite extensions)

(a) Let L/K be a Galois extension with Galois group G = Gal(L/K). Then the
assignment

U K Gal(L/K')

is a bijective, inclusion-inversing bijection between den intermediate fields of L/K and
the closed subgroups of GG. The inverse map is

O:Uw— LY

where LY = {z € L | ux = x for all u € U} is the fixed field of U in L.

(b) The open subgroups of G correspond to the intermediate fields K C K’ C L, for
which K'/K is finite.

(c) For an intermediate field K C K’ C L, K'/K is normal if and only if Gal(L/K")
is a normal subgroup in Gal(L/K). In this case one has a canonical isomorphism of
topological groups

Gal(L/K)/Gal(L/K'") = Gal(K'/K).

We need

Lemma 1.10 If a subgroup U of a topological group H is open, then it is also closed.
If U is closed and of finite index, then U is also open.

Proof 1) For every h € H the coset hU is again open (|1.5]). Thus

H~U= U hU
hgU



is open.

2) If 0y, ..., 0, is a system of representatives for H/U, with oy € U, then H~\U = |J o;U
=2

is closed. O

Lemma 1.11 If L/K is Galois and K’ is an intermediate field which is again Galois
over K is, then the homomorphism

Gal(L/K)

g

Gal(K'/K)

N
— O"K/

is surjective.

Proof Let €2 be an algebraic closure of L and let & € Gal(K’/K). The K-homomorphism
p: K' 5K L—Q

can be extended to an isomorphism 1 :  — Q by standard results of Algebra (see, e.g.,

my course Algebra I, Lemma 16.9), where we embed K’ via K’ < L < Q. Therefore we
obtain a commutative diagram

/ o
K

Since L/K is normal, we have ¢(L) C L (If « € L and p is the minimal polynomial
of @ over K, then () is again a root of p, therefore in L). By considering ¢~! we
see that o = ¢, : L — L is an isomorphism, therefore we have o € Gal(L/K), and by
construction we have oz = 7.

Proof of Theorem [L.O

(a): Well-definedness of the correspondence: If K'/K is a finite sub-extension of L/K,
then Gal(L/K') is open by definition, and, by also closed. If K’/K is an arbitrary
sub-extension, then we have

~

R SRS
R S

Gal(L/K') = NGal(L/K,),

where K, /K runs through the finite sub-extensions of K/K’ (every a € K is contained
in the finite sub-extension K(«)/K). Therefore, Gal(L/K") is closed.



Furthermore it is obvious that for intermediate fields K’ C K" of L/K we have the
inclusion Gal(L/K") C Gal(L/K’), and that for closed subgroups U <V of Gal(L/K)
we have the inclusion LY C LY.

(b): Bijectivity of the correspondence:
1) Let K’ be an intermediate field, then we have L& (/K) = K’ therefore ®¥ = id:

The inclusion “D”is obvious. Assume there is an o € LEME/K) with o ¢ K'. Then
there is a finite Galois extension N/K’ in L/K' with & € N, and a 7 € Gal(N/K’)
with 7o # a (hence NGIWNV/K) — [’ by classical Galois theory). But by there
is a 0 € Gal(L/K') with 0| = 7, therefore oo # a. Contradiction to the fact that
o € [GalL/K")|

2) If H < Gal(L/K) is a closed subgroup, then we have Gal(L/L*) = H therefore
VP = id: We show more generally:

Lemma 1.12 If H < Gal(L/K) is an arbitrary subgroup and if H is its closure, then
we have H = Gal(L/LY).

Proof Let again (L;);c; be the family of the intermediate fields of L/K with L;/K finite
Galois. Let f; : Gal(L/K) — Gal(L;/K) be the restriction map and H; = f;(H). Since
L= U L o € Gal(L/K) lies in Gal(L/L") if and only if o[y for all i € I operates

el
trivially on L = L By finite Galois theory this holds if and only if ol L; € H;, since

Cal(L;/ L") = H,.

Therefore we have o € Gal(L/LH)

< for all i € I if we have f;(0) € H;

< for all i € I there is a 7, € H with f;(1;) = fi(o)

& for all i € I thereis a 7; € H with 7; € f;*(fi(0)) = 0 Gal(L/L;)
s foralliel, o Gal(L/L;) N H # )

& o€,

since the sets ¢ Gal(L/L;) form a basis of neighborhoods for ¢ (if K’/K is an intermediate
field of L/K and N(K')/K is the normal closure, then we have Gal(L/N(K’)) C
Gal(L/K")).

b) We show that the open subgroups U < Gal(L/K) correspond to the finite intermediate
extensions:

If K'/K is a finite extension, K’ C L, then, by definition the Krull topology Gal(L/K")
is open. If conversely U < Gal(L/K) is an open subgroup, then there is an intermediate
field K C K' C L with K'/K finite, so that Gal(L/K') C U. This follows since

K C LU C LGal(L/K’) - K



and from the finiteness of LY /K.
c¢) If K'/K is an intermediate field of L/K and ¢ € Gal(L/K), then obviously we have

Gal(L/o(K")) = o Gal(L/K)o~".

If K’'/K is normal, then we have o(K’) = K’ therefore Gal(L/o(K')) = Gal(L/K') for
all o, therefore this is a normal subgroup. Conversely, if Gal(L/K’) is a normal subgroup,
the Galois correspondence implies that o(K') = K’ for all ¢ € Gal(L/K). From this
follows that K'/K is normal: If « € K’ and & is a conjugate of « in an algebraic closure
L of L, i.e., another zero of the minimal polynomial of o over K, then, by Algebra I,
Theorem 16.15, there is a K-embedding ¢ : L — L with ¢(a) = @. Since L/K is Galois,
we have ¢(L) C L and ¢ = 1|, € Gal(L/K). Since o(K') = K’ we have & € K!

By we further have that
Gal(L/K) — Gal(K'/K)

is surjective with kernel Gal(L/K’). Hence the homomorphism theorem gives the
isomorphism

Gal(L/K)/ Gal(L/K") = Gal(K'/K).

Now we have to consider the topology. On the right hand side, we take the Krull topology.
On the left hand side, we consider the quotient topology (with respect to the Krull
topology on Gal(L/K) and the surjection 7 : Gal(L/K) — Gal(L/K)/ Gal(L/K")).

Quite generally, if f: X — Y is a map, where X is a topological space, then there is a
finest topology on Y, for which f is continuous: Define

VCYopen & f1(V)C X open.
This topology is called the final topology with respect to f. If f is surjective, then this
is called the quotient topology.

It now follows that, with these topologies, the above group homomorphism is a homeo-
morphism.

Exercise!



2 Projective and inductive limits

To describe Galois groups in a conceptual way, we introduce projective limits, which are
also important in other fields of mathematics. The dual term (in the sense of category
theory) is that of inductive limits.

Definition 2.1 A (partially) ordered set (I, <) is called filtered (or directed, or induc-
tively ordered), if the following holds:

For two elements i, 5 € I thereisa k € [ with i <k and j < k.

Examples 2.2 (a) Every totally ordered set is filtered, for example (N, <).
(b) The power set B(M) of a set M is filtered with respect to the inclusion C.

(c) Let L/K be a field extension. The set of all intermediate fields K’ is filtered with
respect to the inclusion.

(d) The same holds for all finite partial extensions K'/K, and as well for all finite normal
partial extensions K" /K.

(e) N with the partial order | is filtered.

Definition 2.3 Let be [ a filtered ordered set. An inductive (respectively, projective)
system of sets over [ is a family

(Xi)ier, (qij)icy)  (vesp. ((Xi)ier, (Bji)i<j))
of sets X; (for i € I) and maps

— X, (fori<jin )
— X; (fori<jinl[))

so that we have
ajpoay; = ag fori<j <k

(resp. BjioBrj = Pri fori<j< k).

The maps «;; (5;i, resp.) are called the transition maps of the system.

Therefore one obtains the term of the projective system from an inductive system by
“reversing of the arrows”. One has also projective and inductive systems of groups (the
X; are groups and the transition maps are homomorphisms) or rings (...) or topological
spaces (....).

Examples 2.4 (a) Let R be a ring and let a C R be an ideal. Then one obtains a
projective system of rings over (N, <) by

n M R/a”
m<n m R/a" — R/a™.



In particular, one has the projective system

(Z/an>n€N
with transition maps

= TN L = TP — ... — T)p*T — L)L

(b) One obtains a projective system of abelian groups over (N, |) by

n +— Z/nZ
ml|n — Z/nZ — Z/mZ.

(c) One obtains an inductive system over (N, |) by

n +— Z/nZ
mln — Z/m — Z/nZ
a = >-a.

(d) Let L/K be a Galois extension. Then the set K = K,k of the finite Galois field
extensions K'/K is inductively ordered (d)), and we obtain a projective system of
finite groups over K by

K' ~ Gal(K'/K)
K'CK" — Gal(K"/K) — Gal(K'/K).

Definition 2.5 (a) The projective limit X = lim X; of a projective system (X, 3;;) of
iel
sets is defined as the set

el el
of the compatible families in the product [] X;.
iel

(b) The inductive limit lim X; of an inductive system (X, ;) of sets is defined as the
quotient !

%Xi = 1]511 X/ ~
of the disjoint union [] X; of the sets X; by the following equivalence relation ~: for
z; € X;and z; € X \jveejhave

;i ~x; = 3k el, i,j <k with a(z;) = a(z;) in Xi.

If the X; have additional structures, then this usually carries over to the limits. E.g., if
one has i.e. a projective (resp. inductive) system of groups, then the projective (resp.
inductive) limit is again a group. This also holds for rings etc.

10



Examples 2.6 (compare (a) Let R be a ring and let a be an ideal. Then

R ::@R/a"

is called the a-adic completion of R and is a ring. The elements of R are compatible
families (@, )nen with @, € R/a™.

Compatibility means that for representatives a,, of @, we have:
(py1 = a, mod a”.

One has a ring homomorphism

which is in general neither injective nor surjective. Obviously we have

n

kerpo = N a”.

n>1

For example, let R = Z and let a = (p) be the principal ideal generated by a prime
number p. Then

Ly = Jm Z /"7
is called the p-adic completion of Z. The map ¢ : Z — Z, is injective, since we
obviously have N (p™) = 0. Every element @ € Z/p"Z will be represented by a uniquely
n>1

determined element o € Z with 0 < o < p”, and this can again be written in a unique
way by

n—1 .
Q= .;) ¢ p'

with numbers 0 < ¢; < p — 1 (p-adic expansion). Thus, every element a € Z, can be
written in a unique way as a formal series

(%) azfaip" (a; €2,0<a; <p-—1)
i=0

If we set

n—1 .
ap, =S ap el (n>1),
=0

then (%) means the compatible family

(o, mod (p™))n>1 -

This shows that there are uncountably many elements in Z, (the set of the families
(a;)i>0 with a; € {0,...,p — 1} is uncountable). In particular, Z — Z, is not surjective.
Z, is also called the ring of the (integral) p-adic numbers.

11



(b) Define Z = @Z/nZ. Here, the projective limit is over (N, |), indexed as in (b).
If n € N and !
n=p*...p"

is the the prime factor decomposition, then one has a canonical decomposition
(2.6.1) ZInZ = Z)p7L X ... X L)p L

(Chinese residue theorem). This is compatible with the transition maps: For m | n we
have
m=p"t..p

with m; <n; (i=1,...,r), and the diagram

(2.6.2) Z/nl—=17)p"Z X X Z]prZ
Z/mZL——71[p™ZL X X Z]p 7

is commutative. This gives a canonical ring isomorphism
7 —112,,
p

where the product on the right hand side runs over all prime numbers. (For this it is
best to write formally n = [ p"™, where the product runs over all prime numbers and

p
n, = 0 for nearly all p, and to write the right hand side of (2.6.1)) as
];[ Z]p™7,

correspondingly for (2.6.2))).

(c) For the inductive system (Z/nZ),en of 2.4] (¢) one obtains an isomorphism of abelian
groups

lim Z/nZ = Q/Z,

which maps a 4 nZ € Z/nZ to the residue class of ¢ mod Z: For every fixed n € N, the
map
Z/nZ — QJZ
a+nl — ++7Z
is a well-defined, injective group homomorphism. This is compatible with the transition
maps: For m | n the diagram

a+ mZ Z]mZ e/
Q/Z
a + ni Z/nZ L+ 7

12



is commutative. This implies the claim — exercise!

The group Q/Z is also called the “Priifer group”. This is also isomorphic to the group
1(C) of all unit roots in C*, via the map

Q/z = u(C
E+Z a

21
q

(d) If L/K is a Galois extension, then, by Lemma

(2.6.3) Gal(L/K) > lim  Gal(K'/K)

K/GICL/K

where Kk is the directed set of the finite normal sub-extensions K'/K of L/K.

(e) If (X;)ier is a projective system of topological spaces, then

m X5 © [T X;

el =

is equipped with the subspace topology, with respect to the product topology on the
product on the right hand side.

(f) If one applies this on the examples (a), (b) and (d), with respect to the discrete
topologies on R/a’z, Z/nZ resp., Gal(K'/K) resp., then one obtains topologies on
R=1lim R/a", Z,, % and lim Gal(K'/ ).

Furthermore one can easily see that, by this, one obtains topological groups, and for
Z%, Z,, and 7, one even obtains topological rings (the multiplication is again continuous).
From Lemma we get that the isomorphism is also a homeomorphism, therefore
an isomorphism of topological groups.

Now we can describe the absolute Galois group

G]Fq = Gal(FQ/Fq>
of a finite field IF, with ¢ elements.
Theorem 2.7 There is a canonical isomorphism of topological groups
Z = Gr,.
Proof For every natural number n there is exactly one extension of degree n over Fy, to

wit: Fyn. This is Galois, and there is a canonical isomorphism

Z/nZ = Gal(F;./F,)
1 modnZ — Frg,

13



where F'r, is the Frobenius automorphism, given by
Fry(z) =27 (forallz € Fpn).

This is compatible with the transition maps: One has F,m C F,» if and only if m | n,
and then the diagram

1 Z/nZ —— Gal(Fn /F,) Fr,

I T

1 Z]mZ — Gal(Fm /F,) Fr,

is commutative. The projective system (Gal(K'/Fy))rrer. i therefore can be identi-
fied with the projective system (Z/nZ)nc )y from (b); accordingly one obtains an
isomorphism

Z = limZ/nZ — lim Gal(Fn /F,) = lim Gal(K'/F,)
n n K’

of the projective limits, which maps a compatible family (@, ), on the left hand side to
the compatible family (F' T%Zn /]Fq)n on the right hand side. The claim of the theorem now

follows with (d), (e) and (f).

Remark 2.8 We have the map

al(Fq, Fq)>

7 G
1 Fr

= N

— =
> — Fr,

where F'r, is the Frobenius automorphism of F,: F'r,(x) = 9. The first homomorphism
is injective, but not surjective, since not even one of the compositions

Z—17=112,—17,
p

is surjective (20.6(a)). But we have that Z is dense in Z (and thus dense in Gal(F,/F,))
(Proof: left to the reader).

14



3 Cohomology of groups and pro-finite groups

The following definition is formulated in a parallel way for the case that topologies on
G and A are given, and one considers continuous maps, or that there is no topology
(equivalent: the topology is discrete, so that all maps are continuous).

Definition 3.1 Let G be a (topological) group and let A be a (continuous) G-module,
i.e., an abelian group A together with a (continuous) composition

p: GxA — A
(0,a) — oa

for which we have
ola+b) = oca+ob

o1(oga) = (0109)a
la = a

for all a,b € A,0,01,09 € G and the unit element 1 € G. For n € Ny define the group of
the continuous n-cochains on G with coefficients in A by

X" = X"(G, A) = {continuous maps z : G"* — A}.

X" is in a natural way a continuous G-module by

(ocx)(00,...,00) = ox(0 o9, 0 oy, ..., 0 o).

The maps
d; - X"t — xm
given by
d;x(00,01, ey 0p) = T(00, ey Ty oy Op),

(where &; indicates that we have omitted o; from the (n + 1)-tuple (oy, ..., 0,,)) induce
G-homomorphisms d} : X"™! — X" and we form the alternating sum

I =>(-1)d; X" — X"
i=0
We often just write O instead of 9". Hence, for x € X"~ !, Ox is the function

(D2)(G0s s ) = 3 (= 1) 2(0s o G ey 7).

=0

Moreover, we have a G-module homomorphism §° : A — X, which associates to a € A
the constant function z(oy) = a,

Proposition 3.2 The sequence
0— AL x0 L xt Py

is exact, i.e., one has im " = ker 9"*! at all places.

15



Proof We first show that the sequence is a complex, i.e., that 00 = 0. It is clear that
' 0d” = 0. Now let € X"~!. Applying 0 to 3.1 we get summands of the form
z(0g, ..., Gj, ..., 0,) With certain signs. Each of these summands arise twice, once where
first o; and then o; is omitted, and again where first o; and then o; is omitted. The
first time the sign is (—1)*(—1)’, and the second time it is (=1)*(—1)’~!. Hence the
summands add up to zero.

For the exactness, we consider the map D! : X° — A D'z = x(1), and for n > 0 the
maps
D" X" s X" (D"x)(0y,...,0,) = x(1,00,...,00).

These are homomorphisms of Z-modules, and not of G-modules. An easy calculation
shows that for n > 0 we have

(3.2.1) Do 0" 4+ 9" o D" = 4d.
If z € ker(0"*!), then x = 9"D" 'z, i.e., im(0") C ker(9"™!) and thus ker(9"*!) =

im(9"), because 9" o 9" = 0.

An exact sequence of G-modules 0 —+ A — X% — X! — X? — ... is called a resolution
of A, and a family (D"),>_1 as above with the property is called a contracting
homotopy. The above resolution is called the standard resolution of A (by G-
modules).

Now we apply the functor of taking the fixed modules under G. For any G-module A
this is the module

A% :={a€ A|ga=aforall g€ G}.
Therefore we define, for n > 0,
Definition 3.3 Let
C™(G,A) = X"(G, A)°.
C™(G, A) consists of the continuous functions z : G"™' — A such that
x(oog,...,00,) = ox(og,...,00)

for all ¢ € G. These functions are called the homogeneous n-cochains of G with
coefficients in A. From the standard resolution we obtain a sequence

(@, A) -2 NG, A) L oG A) —

which is no longer exact. But it is still a complex, i.e., we have 00 = 0, and this complex
is called the homogeneous cochain complex of G with coefficients in A. We set

Z"(G, A) = ker(C™(G, A) 25 0"(G, A)), B*(G, A) = im(C"! 2% 0"(G, A))
and define
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Definition 3.4 For n > 0 the cohomology groups of the complex C*(G, A),
H"(G,A)=Z"(G,A)/B"(G, A)

are called the n-th cohomology groups of GG with coefficients in A.

For computational purposes, and for many applications, it is useful to pass to a modified
definition of the cohomology groups, which reduces the number of variables in the
homogeneous cochains (o, . ..,0,) by one. Let C°(G, A) = A and C"(G, A), for n > 1,
be the abelian group of all continuous functions y : G — A. Then we have the
isomorphism

CG,A) — C°(G, A),z(0) — x(1),

and for n > 1 the isomorphisms
C"(G,A) — C"(G,A),x(00,...,00) = ylo1,...,00) = x(1,01,0109,...,01...0,),
whose inverse is given by
y(or,...,00) = x(00,...,0,) = ooylog oy, o0 o, ... 0.t 0,).

With these isomorphisms the coboundary operators 9" : C"(G, A) — C"T(G, A) are
transformed into the homomorphisms 9"+ : C*(G, A) — C"1(G, A) given by

0(a)(c) = oca—a, fora € A=
0*(f)(o1,02) o1f(02) = flo102) + f(o1),

an+1(f)(0-1a“-70-n+1) = o1f(o2,...,04)

n .
+ Zl(_l)zf(o—lv 301, 030541, Oig 2, - - Opl)
=

+(=1)"" f(oy,...,0,) forn > 1

Setting
Z(G, A) = ker(CY(G, A) 5 ¢ (G A)),

BMG, A) =im(C* (G, A) L5 ¢M(G, A)),
the isomorphisms C"(G, A) — C"(G, A) induce isomorphisms
H"(G,A) = Z"(G,A)/B"(G, A).

The functions in C*(G, A), Z™*(G, A) and B"(G, A) are called the inhomogeneous n —
cochains, n — cocycles, and n — coboundaries, respectively.

We now consider the cohomology groups in small dimensions, n = 0, 1, 2.

HO(G,A) :

17



Lemma 3.5 There is a canonical isomorphism
H(G, A) = AC,

where A = {a € A | ca = a for all ¢ € G} denotes the fixed module of A under G.

Proof We have H(G, A) = ker 8°, and 0" is the map
A 2 ocva, A
a — f:G— Awith f(o)=0a—a.
Therefore we have ker 9° = A,
H'(G,A):
ZYG, A) is the group of the (continuous) maps f : G — A with
flor) = f(o) + af(7).

These are also called crossed homomorphisms. The group B'(G, A) of the 1 —
coboundaries is the group of maps f : G — A of the form

flo)=0a—a
for a fixed a € A. We immediately see:

Lemma 3.6 If G operates trivially on A (i.e., if ca = a for all o0 € G,a € A), then
HY(G,A) = Hom(G, A) : (respectively, Hom o (G, A))

is the group of homomorphisms from G to A (respectively, the continuous homomorphisms,
if we have topologies on the group).

H?(G,A):
Z%(G, A) is the group of (continuous) maps f : G x G — A with

flor,p)+ flo.7) = flo,7p) + o f (T, p)-

These are also called factor systems. The 2-coboundaries are the functions of the
form

flo,7) = glo) —g(oT) + ag(7)

for an arbitrary (continuous) map g : G — A.

The factor systems are related to group extensions. We only describe this for groups
without topology.

18



Definition 3.7 Let G and A be groups (not necessarily commutative). A group
extension of G by A is an exact sequence

1 ASELSG — 1,

i.e., t and 7 are group homomorphisms, ¢ is injective, 7 is surjective, and we have
im ¢ = ker . In other words, E is a group which contains A as a normal subgroup, such
that we have an isomorphism F/A = G.

Lemma 3.8 Assume that A is abelian. Then A becomes a G-module by defining, for
a€ Aand g € G

g(a) = galg) ™",

where § € F is a lift of g, i.e., a preimage of g under 7 : £ — G.

Proof Since A is a normal subgroup, we have g(a) € A, and since A is commutative,
g(a) is independent of the choice of §. In fact, if § is another lift of g, then we have
g=gbforabe A (since 57! € kerm = A), and therefore we have

since A is commutative.
A is a G-module: Obviously we have 1-a = a. Moreover for a,a’ € A we have

gla-d')=gadg™ = gag~'ga'g™" = g(a) - g(a’)

i.e., the operation of G is compatible with the group law of A (which is written multi-

plicatively here).

Definition 3.9 If
1 A—>F-">@G 1
I
1 A TG 1

is a commutative diagram, then the two extensions are called equivalent.

Now we attach a factor system to each group extension.

Let
s:G—=F

be a section of 7 : E — G, i.e., a map with s = ids (This always exists, by the axiom
of choice — obvious for finite groups). For 0,7 € G, the elements s(o) - s(7) and s(o7)
are both mapped to o7 by 7; hence they differ by an element in ker 7 = A. Hence there
is a unique f(o,7) € A with

s(o)-s(t) = f(o,7)-s(oT).
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Lemma 3.10 (i) The map f: (o,7) — f(0o,7) is a factor system, i.e., a 2-cocycle.

(ii) The associated cohomology class
f] € H*(G, A)

is independent of the choice of a section s.

(iii) Two group extensions
12 A—>E-5G—1

15 A5 E 61
are equivalent if and only if the associated classes [f], [f'] in H*(G, A) are equal.

Exercise!
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4 Basics about modules and homological Algebra

Let R be a ring with unit (not necessarily commutative).

Definition 4.1 (a) A (left) R-module is an abelian group (M, +) together with a
composition
RxM — M
(r,m) — rm

so that we have

(i) r(m+n) = rm+rn
(i) (r+sm = rm-+sn
(iii) (rs)m = r(sm)
(iv) Im = m

for all r,s € R and m,n € M.

(b) Let M and N be R-modules. A map ¢ : M — N is called a homomorphism of
R-modules (or R-linear), if the following holds:

(i) p(mq1 + ma) = @(mq) + @(ms) for all my,my € M (i.e., ¢ is a group homomorphism
of (M,+) to (N,+)),

(ii) @(rm) = ro(m) for all m € M, r € R.
Let Hompg(M, N) be the abelian group of the R-linear maps from M to N.

Remarks 4.2 (a) A right R-module M is defined similarly, but the property (iii) is
replaced by

(iii’) (rs)m = s(rm).
If one writes the composition differently, namely

MxR — M
(m,r) — mr,

then one gets a more plausible relation
m(rs) = (mr)s.

(b) For a commutative ring, left- and right modules are the same.

(c) As usual, one calls an R-linear map ¢ : M — N a monomorphism (resp. epimorphism,
resp. isomorphism), if it is injective (resp. surjective, resp. bijective).

(d) The composition of R-linear maps is again linear. The inverse of a R-module
isomorphism is again R-linear.
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Examples 4.3 (a) Every abelian group A becomes a Z-module by the definition
na=a+...+a (n-times) forn €N,

Oa = 0
(—n)a = —(na) forn e N.

One can see that abelian groups and Z-modules are the same.

(b) If (M;);es is a family of R-modules, then the abelian groups

[IM 2> &M

i€l i€l
become R-modules by the definition r(m;)icr := (rm;)ier.

The first module is called the direct product of the R-modules M;, and the second
module is called the direct sum of the R-modules M;.

(c) If K is a field , then a K-module is the same as a K-vectorspace.

Definition 4.4 An R-module M is called a free R-module, if there is a family (m;);e;
of elements m; € M, so that we have: Every element m € M has a unique representation

m= ) rm;,
i

where 7; € R and r; = 0 for almost all 7 € I (so that the right sum is finite, if we omit
the summands with r; = 0). Such a family (m;);cs is called basis of M.

Examples 4.5 (a) Let I be a set. Then the R-module

Fp(l):=@®R

i€l

is free with basis (e;);er, where we have e; = (d;;)jer, with the Kronecker symbol

s -1
Yol 0 o, g
(with 0,1 € R). Fg(I) is also called the free R-module over /. Sometimes one identifies
e; with ¢ and one writes the elements as formal linear combinations

Zrii7

i€l
with r; € R,r; = 0 for nearly all 7.

(b) The Z-module M = Z/5Z is not free, since for every m € Z/5Z, we have 1-m =
m =6-m. But M is a free module over the ring Z/57Z.
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Lemma 4.6 (Universal property of the free module) Let M be an R-module and let
(m;)ier be a family of elements m; € M. Then there is a unique R-module-homomorphism

o Fp(I) = M
with p(e;) = m; for all i € I (Therefore we have Hompg(Fg(I), M) = Abb(I, M) via
@ = (plei))ier)-

Proof Let ¢((r;)) = X rimi.

icl
Definition 4.7 M is free with basis (m;);c; if and only if the ¢ above is an isomorphism.

Definition 4.8 Let M be an R-module. An (R-)submodule of M is a subset N C M,
for which we have:

(i) N is subgroup with respect to +,

(ii) for all n € N and r € R we have rn € N.

Lemma 4.9 If ¢ : M — N is a homomorphism of R-modules, then ker ¢ is a submodule
of M and im ¢ is a submodule of N.

Proof easy!

Theorem 4.10 If M is an R-module and N C M is a submodule, then the quotient

group
M/N

becomes an R-module by the definition
rtm+N) .= rm+ N forre RmeM

(Hence r - m = 7m, if ™ denotes the coset of m € M). The surjection 7 : M — M/N is
R-linear.

Proof Left to the reader!

Remarks 4.11 The homomorphism theorem and the first and the second isomorphism
theorem hold for R-modules:

(a) An R-linear map ¢ : M — N induces an R-module-isomorphism

M/kerp = imp.

(b) For submodules Ny, Ny C M one has an R-module-isomorphism

N /(Ni A No) 55 (N} + No) /N .
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(c) For submodules My C My C M; one has an R-isomorphism

(My/M3)/(My/Ms) = My /M, .

Now we consider the homological Algebra of R-modules.

Definition 4.12 We define complexes of R-modules again as sequences

n—1 " n+1
LMY g D g O 2

]

where the M™ are R-modules and the maps 9" are linear maps with 979"~ = 0. The
elements in ker " are called the cycles in M™, and the elements of im 9"~! are called the
boundaries in M". Since 9"9" ! = 0, we have im 0"~! C ker &". The n-th cohomology
of the complex is the R-module

H"(M') =ker 9"/ im 9" !

and the complex is called exact at the place n, if H"(M") = 0, and exact, if it is exact at
all places.

Definition 4.13 Let C" and D' be complexes of R-modules, where R is a ring (for
R = Z we have simply complexes of abelian groups). A morphism of complexes (of

R-modules)
p:C =D

is a collection of homomorphisms of R-modules
@' C"— D,

which are compatible with den differentials, i.e., for which all squares

are commutative, where 9% and 9% are the differentials for C* and D"), respectively.
Therefore we have ¢"™19% = 0% ¢" (simplified notation, without degrees: pdc = dpyp).
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Lemma 4.14 A morphism of complexes
p:C =D
induces homomorphisms
. =H'(p): H'(C) — H'(D)

in the cohomology. For these we have (id¢). = id mi(cy and (V). = Y., for another
morphism of complexes ¢ : D° — E'.

Proof By the compatibility with the differentials the map
o' O = D

induces maps
ker0p, — kerdp
imds! — imay!

and thus a well-defined R-linear map

o HY(C) — H'(D), |
[a] :==a mod imdg;' + ¢'(a) mod imd5"' =: [¢i(a)]

(for a € ker 3%). The other claims are obvious.
In the following, [a] denotes the cohomology class of a cycle a.
Definition 4.15 A sequence
c45D%E
of (morphisms of) complexes is called exact, if the sequence
4D S
is exact for all 7.
Theorem 4.16 (long exact cohomology sequence) Let R be a ring and let
0-C 3D 5 E >0

be a short exact sequence of complexes of R-modules. Then there are canonical R-module
homomorphisms A ‘ '

§': HY(E) — H™H(C)
for all 7 (called connecting homomorphisms), such that the sequence

7 i

o HYEYS H(O) S H(D) S H(E) S HYY(C) — ...

is exact.
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Proof We have a commutative diagram

(4.15.1)

0 (Citt ¢ Ditt ¥ Ei+l 0
oc (2) |op (3) |om
0 oY . p Y pi 0
dc ap (1) o=
1 Qpifl

0—>C"! — D

where the rows are short exact sequences.

1) Exactness at H'(D’): It is obvious that 1,¢, = 0 (since ¥, ¢, = (Vo). = 0, = 0). Let
[d'] € H' (D) with v,[d"] = 0. Then v'd’ is a boundary, i.e., there is an e¢'~! € E'~! with
Pi(d') = Ope'~!. By the surjectivity of 1"~ there is a d'~! € D' with '~ 1d"~1 = e'~1.
Then we have

Q/Jl(dl . aDdi—1> — aEei—l o 1/JiaDdi_1 — aEl/Ji_ldi_l - Q/JiaDdi_l _ O

(commutativity of (1)). By the exactness of the i-th row there is a ¢ € C? with
¢'c = d' — Opd~1. For this ¢; we have

¢i+1acci — 8D¢Z (- 8Ddz _aDaDdi—l =0

by the commutativity of (2), since 9pdp = 0 and since d* is a cycle. Since ¢**! is injective,
we get Ooct = 0, i.e., ¢ is a cycle. Then we have

[d'] = [d' = Opd'™'] = [¢'c'] = ¢.['] € im ¢
2) Definition of ¢%: Let [¢/] € H(E), i.e., let ' € E* with Oge’ = 0. By the surjectivity
of 1 there is a d* € D' with ¢'d* = e'. Consider
apdi € DL,

We have , . o
P Hopdt = Opy'd®  commutativity of (3))
= Oge' =0 (assumption).

26



Hence, by the exactness of the i + 1-th row, there is a ¢! € C**! with ¢ttt = dpd.
For this element we have

6200t = Opp L = Opdpd’ =0

(commutativity of (4) and dpdp = 0), and we see that dcc™™' = 0, since ¢ is injective.
Therefore ¢t is a cycle. We set

(4.15.2) §([e']) = [¢] € HH(C).

Conclusion: The definition of §* can be visualized as:

i1 ! i
C | —— 8Dd

d'—— ¢t

Well-definedness: Let ¢i € B be another cycle with '] = [¢l], let di € D with ¢idi = ¢,
and let ¢itl € CT! with ¢"cit!l = dpdi) be chosen as above. We have to show that
1] = [e¥1) € HI(C).

By assumption, there is an e'~! € E*~! with
¢ = e+ Oge !
and by the surjectivity of ¢'~! thereis a d'~! € D! with ¢~ 1d"~! = ¢'~!. We calculate

Yi(d—d' — Opdtt) = e — el —iopd
= i — el — Oppi~ldil (commutativity of (1))
= el —e —Ogei~ 1 =0.

By the exactness of the i-th row there is a ¢! € C* with ¢'c' = d' — d' — dpd~'. We claim
that
(4.15.3) ¢t = @t 4 9ud

which implies [¢F1] = [¢**!] as wished. But we have

¢i+1(c”iv+1 _ ci—l—l) _ aD(’jiN_ Opd
= aD(dZ - dl - 8Ddi_1) (since 8D(9D = 0)
= Opd'c’ = ¢ Occ! (commutativity of (2))
By the injectivity of ¢!, (4.15.3)) follows.

Exactness at H'(E'): One can easily see that d'¢)! = 0: If [e;] € im 1!, then we can
choose d' € Z'(D") above, i.e., choose it as a cycle. Then dpd’ = 0, therefore ¢ = 0,
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by Definition (4.15.2)) therefore §([¢’]) = 0. Conversely, let 6([¢']) = 0, therefore (with
the notations above) [¢"T1] = 0, i.e.,

Gt = G
for an ¢! € C*. Then, again with the notations above, we have

Opdi = G+l = Gl
= Opd'cd (commutativity of (2)).

Therefore for d = d' — ¢'ct we have Opdi =0, ie., di € ZY(D’) and Wc?’ = idt —igict =
YPid' = €' (since ¥'¢’ = 0), therefore

Yild] =[€].

Exactness at H(C"): Exercise!

The claim follows, since ¢ was arbitrary.

Corollary 4.17 (Snake lemma) Let

(4.16.1) 0 A’ B’ C’ 0
ol
0 A B C 0

be a commutative diagram of R-modules with exact rows. Then one has a canonical
exact sequence

(4.16.2) 0 — ker f — kerg — ker h 2 coker f — coker g — coker h — 0.

Here one defines:

Definition 4.18 Let ¢ : M — N is a homomorphism of R-modules. Then
coker ¢ := N/im ¢
is called the cokernel of ¢.
Remark 4.19 With this definition we always have an exact sequence
0—>kerg0<i>Mi>N£>cokergp—>0

where 7 is the inclusion and p is the canonical projection.
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Proof of the snake lemma: We regard (4.16.1)) as a short exact sequence of complexes,
where we complete with zeroes above and below:

0 0 0 0 0

0 A B’ C’ 0
f g h

0 A B C 0

0 0 0 0 0

The long exact cohomology sequence of gives : The cohomology at A, B and
C' is just ker f,ker g and ker h, respectively, and the cohomology at A’, B and C" is just
A'/im f, B'/im g and C’/im h. The homomorphism § in is just the connecting
homomorphism. All other cohomology groups are zero.

Remarks 4.20 (a) The following diagram with exact rows and columns gives an
explanation of the name and the definition of the maps (and — by ’'diagram chase’ — also
a proof of the snake lemma)

0 0 0
o
ST > coker f —— coker g —— coker h ——=0
/
/ /
1 0 A— g 0
\\
N o
f g h Y
a B ‘
0 A B C 0 l

The sequence of the kernel below is induced by « and /3, the sequence of the cokernels above
is induced by o' and ’. The homomorphism ¢ is defined as follows: For ¢ € kerh C C
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let b be a lift of ¢ in B ((b) = ¢) and ¥’ = g(b) € B’. Then “b already lies in A" (if
we regard o' as inclusion), more precisely, there is an o' € A" with «(a’) = V' (since
B'(t') = h(c) =0 and ker 5/ = im «’). Then one has

d(c) = class of a’ in coker f .

This follows from the definitions in [£.16] On the other hand, with the indicated maps,
one can easily prove the well-definedness of § and the exactness of (4.16.2)).

(b) In the literature the easy snake lemma is usually proven first, and the long exact
cohomology sequence is derived from it.

Corollary 4.21 Let
0—-A—-B—-C—=0

be an exact sequence of abelian groups and let n € N. Then one has an exact sequence
0 — Aln] — B[n| - C[n] - A/n — B/n — C/n — 0.
Here, for an abelian group D let
Din] := {de D |n-d=0}
be the group of the n-torsions elements and let
D/n := D/nD,

with nD = {nd |d € D} C D.

Proof Apply the snake lemma to

where = denotes the n-multiplication x — nz.

Corollary 4.22 (compare example 20.6] (c))

Q/Zn] = Z/nZ

Proof Apply [£.2T] to the exact sequence
0-Z—-Q—-Q/Z—0,

where Q[n] = 0 and Q/nQ = 0.
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5 Applications to group cohomology

Let G be a group or a topological group.

Definition 5.1 Let A and B be two (continuous) G-modules. A map
p:A—B

is called a (homo-)morphism of G-modules, if ¢ is a (continuous) group homomor-
phism and if we have:

p(oa) =ocp(a) forallo € Ganda€ A.

Lemma 5.2 A homomorphism ¢ : A — B of G-modules induces a canonical homomor-
phism of abelian groups in the group cohomology

0.t H(G, A) = H'(G, B)

for all @ > 0. Here we have id, = id and (¢¥¢). = ¥.¢, for another homomorphism of
G-elements ¢ : B — C.

Proof ¢ induces a homomorphism
¢ C'(G, A) = C'(G, B)
on the (continuous) i-cochains by
(f:G"—= A)— (pof:G'— B).

It follows immediately from the definitions that the ¢ are compatible with the differentials
(0¢" = p™10), therefore this induces a morphism

p:C(G,A) = C(G, B)
of complexes. The claim follows by passing to the cohomology (Lemma [4.14)).

Theorem 5.3 (Long exact cohomology sequence) Let

045 B 050

be an exact sequence of (continuous) G-modules, i.e., let o and 5 be G-module homo-
morphisms and let the sequence be exact. In case of continuous G-modules we assume

£ has a continuous section as map of sets,
(5.3.1) i.e., there is a continuous map s : C' = B
(not necessarily a homomorphism) with fs = id¢ .

Then there is a canonical exact cohomology sequence

0 — HYG,A) % HYG,B) & HYG,C) 5 HYG,A) —
~ HI(G,A) % H(GB) 5 H(@GO) 5 HYWYG A —



Proof We only have to show that
0— C(G,A) S C(G,B) S C(G,C) =0

is a short exact sequence (of complexes); then the claim follows by passing to cohomology
(Theorem {4.16)). Therefore we have to show that for every i the sequence

0 O, A) S Ci(a,B) S i@, 0) =0

is exact. The injectivity of o' and the exactness at C(G, B) follows easily from the

exactness of 0 = A% B2 C. Now, let s: C — B be a (continuous) section of 5. The
existence of s follows from the axiom of choice, or from the assumption (5.3.1)) (in the
continuous case), respectively. Then the map

st CYG,C) — CYG,B)
[ = sof

is a set theoretical section of 3¢, i.e., we have ‘s’ = id. From this follows immediately
the surjectivity of ¢, therefore the exactness at C*(G, C).

Proposition 5.4 (Change of the group) (a) Let G and G’ be (topological) groups, let
A be a (continuous) G-module and let A" be a (continuous) G’-module. Furthermore let

G =G |, p: A=A
be (continuous) group homomorphisms with
p(m(g')(a) = g'¢(a)

for all a € A and all ¢’ € G'. ((m, ) is then called a compatible pair). From this we
obtain canonical homomorphisms

(m,p)s : H'(G,A) = H"(G', A")
for all n > 0.
(b) (Functoriality) We have (idg,ida). = id. If
7{'/ . G// N Gl g0/ . A/ N A//
is another compatible pair, then (77’, ¢’p) is compatible and we have

(7T7T/7 (10/@0)* = (ﬂ-,v SD/)*<7T7 90)* : Hn<Ga A) — Hn(G”7 A”) :

Proof (a): We obtain the canonical homomorphisms

Cc"(G,A) — C"(G'A)
(f:G"—=A) — (pofor™: (G')——=A")

|

G'—A

32



These are obviously compatible with the differentials and therefore induce a morphism of
complexes

C(G,A) - C(GA).
The claim follows from Lemma [4.14
(b): This follows immediately from the construction and

Examples/Definition 5.5 (a) Let H < G be a subgroup and let A be a (continuous)
G-module. Then A is a (continuous) H-module by restriction of the operation on H.
The pair
i H—>G , id:A— A
is compatible and defines a canonical homomorphism
Res : H"(G,A) — H"(H,A),

for every n > 0, which one calls the restriction from G to H.

(b) Let N < G be a normal subgroup, and let A be a (continuous) G-module. Then the
fixed module

AN
is a (continuous) G/N-module by the definition
(gN)a := ga forallge Gandac€ A.
(this is well-defined, since na = a for all n € N, if a € AY). The pair
TG—-»G/N , i:AN A
is compatible by construction and defines a canonical homomorphism
Inf : H"(G/N,AN) — H™"(G, A),

for every n > 0, which one calls the inflation from G/N to G.

Now we will apply this to the so-called Galois cohomology.

Definition 5.6 Let L/K be a (possibly infinite) Galois extension of fields and let
G = Gal(L/K) be its Galois group, equipped with the Krull topology. A discrete
G-module is a continuous G-module A, where A carries the discrete topology.

Lemma 5.7 Let A be a G-module. Then the following properties are equivalent:
(a) A is a discrete G-module.
(b) For all a € A, the stabiliser
Sta(a) = {g € G | ga = a}
(compare Algebra I, Def. 17.4) is open in G.

(c) A= U AY, where the union runs over all open subgroups of G.
UG
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Proof (a) = (b): For a € A restrict
w: GxA — A
(9,2) = gz
to the open set G’ x {a}. The inverse image of the open set {a} is just Stg(a) x {a}.
(b) = (c): For a € A, we have a € ASt¢(@),

(c) = (a): Let a € A and let U < G be an open subgroup with a € AY. For (g,b) €
pt({a}), Ug x {b} is an open neighborhood of (g, b) with u(Ug x {b}) = {gb} = {a}.

Examples 5.8 (a) In the situation of [5.6] (L,+) and (L*,-) are discrete Gal(L/K)-
modules.

(b) Every submodule of a discrete G-module is again a discrete G-module.

Remarks 5.9 (a) A discrete Gal(L/K)-module A is also called a Galois module for
L/K, and
H"(Gal(L/K), A)

is called the n-th Galois cohomology of A. It is also denoted shortly by H"(L/K, A).

(b) In particular, let K, be the separable closure of a field K (the set of all separable
elements over K in the algebraic closure K of K). Then K,/K is Galois, and

G = Gal(K,/K)

is called the absolute Galois group of K (compare for the case K =F,). For a
discrete GG -module A one also writes

H"(K, A) = H"(K,/K, A) = H"(Gx, A).

The understanding of the absolute Galois groups and its Galois cohomology is an
important theme of number theory and arithmetic geometry.

Now let L/K be a Galois extension with Galois group G = Gal(L/K), and let A be a
discrete G-module. If L' is an intermediate field of L/K, which is Galois over K, and if
Up = Gal(L/L') is the associated closed normal subgroup of G, then

AUL/

is a Gal(L'/K)-module (via the isomorphism Gal(L'/K) = G /Ur/), and for another
intermediate field L” with L O L” O L' O K and L”/K Galois we have

AUL/ — (AUL//)Gal(LN/L/)
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for the subgroup Gal(L”/L") C Gal(L"/K).
L 1

L U = Gal(L/L")

Gal(L" /L")

L U = Gal(L/L) Gal(L"/K)
Gal(L'/K)

K G = Gal(L/K)

Therefore we have an inflation map
(5.10.1) Infrp: H'(L'/K, A"v) — H"(L" /K, A"")

Furthermore, by (b) it is obvious that, for another Galois sub extension L /K with
L" DO L" D L' we have

(5102) IHfL////L/ = InfL’”/L” O IHfL"/L' ,
as well as Infy,/;, = id.

In particular, we obtain an inductive system

(5.10.3) (H™(L'/K, AVr))

L'ekK(L/K) "’

with the inflations ((5.10.1]) as transition maps, where IC(L/K) is the inductively ordered
set of the finite partial Galois extensions of L/K (compare (d)). For these Uy is
open and Gal(L'/K) is finite.

Furthermore, for L', " € K(L/K) and L' C L" one has a commutative diagram

(5.10.4) H™(L"/K, AVw)

InfL/L//

InfL///L/ Hn(L/K, A)
/4’
HY(L'/K,AYv),
by (5.10.3)) for L” = L. By the universal property of the inductive limit (see Exercise 3),

this gives a canonical homomorphism

(5.10.5) lim H"(L')K,A"r) — H"(L/K, A).
L'eK(L/K)

Explicitly, an element on the left, represented by a x € H"(L'/K, AVv') for an L' €
K(L/K), is mapped to Infy /1 ().
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The following theorem shows that one can calculate the Galois cohomology of L/K as
an inductive limit of the cohomologies of the finite groups Gal(L'/K).

Theorem 5.10 The map (5.10.5)) is an isomorphism.

Proof By definition, Infy,/;/ is induced by the morphism of complexes

C" Y@, A) 0 C™(@G, A) 2 C"H(@G, A)

Tanl Toé’ﬂ TO/H»I

. ——=C"Y(Gal(L//K), AVr) 2~ C"(Gal(L/ /K, AVr) —2 "+ (Gal (L' /K), AVv) — . ..

Here we have o’ (f) = ifp" for an r-cochain g : Gal(L'/K)" — AYr' | where p : G —
Gal(L'/K) = G /Uy is the projection and i : AV’ — A is the inclusion. Obviously all
" are injective.

Surjectivity of (5.10.5)): It suffices to show: If f € C™(G, A), then thereisan L' € K(L/K)
and a g € C"(Gal(L'/K), AVv) with a"(g) = f. In fact, if f is an n-cocycle, then g is a
cocycle as well, since a"t10g = 0a™g = 0f = 0, and since a"*! is injective, and thus we
have [f] = [ag] = au[g] = InfL,1/[g].

Therefore, let f: G" — A be an element in C"(G, A), hence a continuous map. With
G, G™ is compact as well, therefore f(G") is compact as well, since A, as a discrete
topological space, is obviously Hausdorff. Since A is discrete, this means that f(G") is
finite. Since every element a € A lies in the fixed module AY for some open subgroup
U < @, there is an open subgroup U < G with

F(Gmy C AV

Moreover, by passing to an open subgroup, we can assume that U < G is an open
normal subgroup (if U = Gal(L/K’) for a finite partial extension K’/K, then consider
U" = Gal(L/L') for the normal closure L'/K of K'/K).

Furthermore, by the continuity of f and the discreteness of A for every g = (g1,...,9n) €
G", the set f1({f(g1,---,9x)}) is open and therefore contains an open neighborhood
Uy x ... x g, U, =:U(g) of g, with open subgroups Uy, ..., U, of G. As above we can
assume that the U; are open normal subgroups of G. Since G" is compact, G™ is covered
by finitely many U(g"),...,U(g"")). Let N be the intersection of U above and of all U,
which occur in the finitely many U(g®)). Then f only depends on the cosets modulo N,
and therefore is constant on all sets

gN X ... x g,N

for all (g1,...,9,) € G™. Furthermore, since N C U, f has its image in AV,
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If now L' = LV then, by (infinite) Galois theory, L'/K is a finite Galois extension and
we have N = Gal(L/L") = Uy = ker(G 5 Gal(L'/K)), and by construction, f lies in
the image of

o™ C™(Gal(L'/K), AVr') — C™(G, A)
(the inverse image of f is g with g((p(g1),--.,0(gx))) = f(91,---,n))-
Injectivity of (5.10.5): Let g € Z"(Gal(L'/K), AYv) with Infy,;/[g] = [a} 9] = 0.
Therefore there is an f; € C" (G, A) with 9f; = af 9. By the first step, there is a
finite Galois sub extension L”/K and a g, € C"(Gal(L"/K), A"+") with o, /.g1 = fr.
Here we may assume that we have L” O L’ (by possibly making the normal subgroup N
above smaller). If we now form

g CT(Gal(L'/K)A"v) — C"(Gal(L"/K), AV
as above, we obtain

Ozz/Lquzn/L,g = @?]/L/g = 8]”1 = 30427Llug1 = Oéz/L//agl s

and therefore a7, 9 = 0g: by the injectivity of a} /- This means that Infrr /1] =
[afn /9] = 0, ie., that, in the inductive limit, [g] is equal to 0.

Finally, we introduce a useful tool for calculating cohomology. Let G be a group with
discrete topology or let G = Gal(L/K) for a Galois extension L/K, equipped with the
Krull topology.

Lemma /Definition 5.11 Let A be an abelian group and let
MCS(A)={f:G — A| fis continuous}

where A carries the discrete topology. Then M%(A) becomes a discrete G-module by the
definition

(9f)(h) == [(hg)

for g, h € G and is called the coinduced module associated to A.

Proof of the claims: 1) M%(A) is a G-module: It is obvious that 1 - f = f and that
g(fi+ f2) = gfi + gfs for g € G. Furthermore we have

(91(g2))(h) = (g2f)(hg1) = [f((hg1)g2)
= f(Mag2) = ((q192)f)(h),

and hence g1(g2f) = (9192)f for g1, 92 € G.

2) MY(A) is a discrete G-module: For G with discrete topology there is nothing to show;
therefore let G = Gal(L/K) be a Galois group. If f : G — A is continuous, where A
has the discrete topology, then there is, by the proof of Theorem [5.10, an open normal
subgroup N < G, so that we have f(g) = f(gn) for all n € N. But this implies that we
have f = nf for all n € N. The stabilizer of f in GG therefore contains N, and hence is
open.
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Remarks 5.12 For G with discrete topology, M“(A) is simply the set of all maps
f G — A. In particular, for a finite group G, one has a group isomorphism

MCE(A) = @A
oc€EA

fo= (flo™))eea

and this becomes an isomorphism of G-modules, if G' operates on the right hand side as
follows:

T<a0)0€G = (ar—la)aeG-

In particular, there is a isomorphism of G-modules
M¢(z) = Z|G],

where Z[G] is the group ring (see Exercise 11). The usefulness of the coinduced G-modules
lies in the following property:

Proposition 5.13 (a) under the assumptions of we have

H"(G,M%(A)) =0 forall n>0.

(b) Furthermore there is a canonical isomorphism

H(G,M“(A)) = A.

Proof (a) Let n > 1 and let f € Z"(G, MY(A)). Define a map
h: Gt — MY(A)

by
h(gr, - 9n-1)(9) == f(g,91,-- -, gn-1)(1).

Then h is well-defined and continuous (with respect to the discrete topology on M (A)):
By the proof of Theorem |5.10 and the continuity of f, there is an open normal subgroup
N < @G, such that f: G — MY(A) factorizes over (G/N)". Therefore h(gi, ..., gn 1)
only depends on the g; mod N, therefore is continuous, i.e., in M%(A), and furthermore
h factorizes over (G/N)"~! and thus is continuous.

Furthermore, with Definition 3.1 we calculate for ¢g1,...,9n,9 € G
((Buh)(g1,-- -5 90))(9)

n—1 .
= [glh(927 s 7gn> + ’L;(_]')Zh(gla <o 3iGiv1, - 7971) + (_1)nh(gl7 s 7gn—1>](g)

n—1 .
= [f(g,917927 e ,gn) + i;(—l)lf(g,gl, o3 9iGi+1y - - - ,gn) + (—1)nh(g,g1, ... ,gn_l)](l)

= [=(0f)g, 91, 9n) + 9f (g1, 92)](1) = (9f (g1, -, 9.))(1) = f(g1,---,90)(9)
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since df = 0. Therefore we have f = dh € B"(G, MY(A)) as claimed.

(b): For f € MY(A) we have: f € H(G, MY%(A)) < f(h) = f(hg)forallh,g € G & f
is constant. The map a — f with f(g) = a for all g € G therefore induces the isomorphism
in (b).

Corollary 5.14 If G is a finite group, then we have H"(G, Z[G]) = 0 for all n > 0.
Lemma 5.15 Let A be a discrete G-module. Then the map

14 - A — MG(A)
a +— f, with f,(9) = ga

is an injective homomorphism of G-modules (where, on the right hand side, A is only
regarded as an abelian group).

Proof For h € G we have fr.(9) = g(ha) = (gh)a = f.(gh) = (hf.)(g), therefore
fha = hfa-

Remark 5.16 If we set B := cokeriy = M%(A)/A, then we obtain a short exact
sequence of discrete G-modules

0— A< MC(A) = B—0.
In the long exact cohomology sequence
0— AY = (M%(A)¢ - BY = HY(G,A) — ...,
by [5.13 we have H"(G, M“(A)) = 0 for n > 1. This gives an exact sequence
0— A~ A— B — HY(G,A) =0

and isomorphisms

H™YG,B) > H'(G, A).

Thus one can calculate the cohomology of A in degree i (one denotes this also as dimension
i) by the cohomology of B in degree i — 1. This is called the method of the dimension
shift.

Another application is:

Theorem 5.17 Let G be a finite group of order N. For every G-module A and every

n > 0 we have
N-H"(G,A)=0.
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Proof We have the homomorphisms of G-modules

AL MCA) 5 A
a — (o 0oa)

f = > ol f(o).

ceG

For i = iy (and general G!) see[5.15] The map 7 = 74 is only defined for finite G. The
additivity is obvious, and for 7 € G we have

m(rf)= ¥ o7 for) = X 7(o7)" f(oT) = 77(f).

oceG ceG

Obviously, we have i = N, i.e., w(i(a)) = N - a. Then the composition

H™(G,A) ™ H™(G,M“(A)) ™ H"(G, A)

is the multiplication by N (N, = N, as one can see from the definition). On the other
hand, this composition is zero, since H"(G, M%(A)) =0 (n > 0). The claim follows.
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6 Hilbert 90 and Kummer theory

Theorem 6.1 (Hilbert’s Theorem 90) Let L/ K be a Galois extension with Galois group
G. Then we have
HY(L/K,L*)=H'(G,L*)=0.

Proof By the limit property of Theorem it suffices to show this for finite Galois
extensions (Note: For an intermediate field M of L/K, we have L* Gal(L/M) — A< by
Galois theory). Therefore let G be finite and let

f:G— L~

be a 1-cocycle. By the linear independence of field homomorphisms (Algebra I, Corollary
20.3)
> flo)o

oceG

is not the zero map; therefore there is an o € L™ with

Bi= ¥ flo)ola) £0,

ceG

ie., € L*. Then, for 7 € G, we have

T(8) = ¥ 7f(o)To(e) = Ung(r)—lf(m)m(a) = f(r)7'8,

celG
by the cocycle property (f(ro) = 7f(o) - f(7)). Thus
f() =) -g=rH-(BH? forall TG,
is a 1-coboundary.

This theorem has many applications; one is the Kummer theory (compare Algebra I,
§20):

Let K be a field and let K, be a separable closure of K. Furthermore let n be an integer,
which is invertible in K (i.e., char(K) { n) and let p, € K be the group of the n-th
roots of unity in K. Then p, is cyclic of the order n (see Algebra I, Lemma 15.6(e)).
Every separable extension L of K we regard as subfield of K. For every such L let
tn(L) = p, N L be the set of the n-th unit roots in L.

Theorem 6.2 (Kummer isomorphism) Let L/K be a Galois extension of fields. Then
there is an isomorphism

(L) N K> (K" HY(L/K, p(L))

which, for an a € K* with a = 8", € L, maps the class of a to the class of the cocycle

UH@EMn(L).

p
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Proof We have an exact sequence of discrete Gal(L/K)-modules
1= pn(L) = L* 5 (L) — 1,

where = denotes the homomorphism z +~ z". This gives the exact cohomology se-
quence

K* 5 (09" N K* % HY(L/K, (L)) — H'(L/K,L*) = 0.

Here we used that for G = Gal(L/K) we have: (L*)% = K* ((L*)")¢ = (L*)" N K*,
as well as H'(G, L*) = 0 (Hilbert 90). Furthermore ¢ is the connecting homomorphism.
By the exactness of the cohomology sequence, the surjectivity of ¢ and the claim of the
theorem follows with the homomorphism theorem, since the image of the first map is
(K*)™. The explicit description of § follows from the definition of § and of the differential
o L* — CYG,L").

Corollary 6.3 There is an isomorphism

K (K 55 HY (K, )

Proof This follows from for L = K, since we have (K)" N K* = K*: For every
a € K* thereis a f € K with " = «. Initially, there is such 3 in the algebraic closure,
as a zero of the polynomial X™ — «, but § is in K, since this polynomial is separable
(since char(K) { n, compare Algebra I, Proof of Theorem 20.5).

Remark 6.4 Therefore we have an exact sequence of discrete G g-modules
L=y > KX S KS—1,

the so-called Kummer sequence. Corollary follows directly from the associated
cohomology sequence.

Theorem can be strengthened to an existence claim.

Definition 6.5 Let K contain all n-th roots of unity (so that pu,(K) = p,). A Galois
extension L/K is called a Kummer extension of exponent n, if L/ K is abelian of exponent
n.

Here we define for n € N:

Definition 6.6 (a) An abelian group A is called of exponent n, if nA =0, i.e., na =0
for all a € A.

(b) A Galois extension L/K is called abelian (resp. abelian of exponent n), if Gal(L/K)
is abelian (resp. abelian of exponent n).
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Theorem 6.7 (Kummer correspondence) Assume that p, € K. Then there are
inclusion-preserving bijections

finite Kummer- KR subgroups A C K*
IC:=1{ extensions L/K » with (K*)" C Aand , =D
of exponent n T | A/(KX)" finite

which are inverse to each other, via the assignments

L
La = L(YA)

% A= (L))" N K
P

< A

Here let L(Y/A) = L({/a | a € A).

Proof For L € K we have (K*)" C Ay C K*, and by Theorem , we have an
isomorphism

Ap/(K)™ & HY (Gal(L/K), i) -

Since L/K is finite, H'(Gal(L/K), j1,,) is obviously finite, therefore Ay lies in D. Con-
versely if we have A € D, then, for every a € A, the extension K (/«)/K is Galois, with
cyclic Galois group of exponent n (since p,, C K, by the Kummer theory from Algebra
I, §20). Let a,...,a, € A be elements, whose cosets form a system of representatives
for the finite group A/(K*)". For every @ € A we then have a = «, ... ;4" with
i1,...,0s € {1,...,r} and v € K* and thus

K(Ya) € K(ya,..... yar).

Hence La = K(V/A) = K({/aq, ..., 3/a,) is the compositum of the fields K ({/a;) and is
thus finite over K and abelian of exponent n, therefore in C. Therefore the assignments
¢ and ¢ are well-defined.

Furthermore we have

(6.7.1) K(JA)CL ie, ¢¢L C L.

In fact, for « € ¢L = A, = (L*)" N K* we have K({/a) C L. Here {/a denotes
an element v € K, with 4™ = a. On the other hand, by definition we have a = "
for a g € L*. Thus (v/f)" = a/a = 1, therefore v/ = ( € p, C K. It follows
K(y) = K(8) C L. Overall follows ¥¢L = K({/AL) C L, therefore (6.7.1). On the

other hand we have
(6.7.2) (LA)"NK* DA Jie, ¢ypA D A.

In fact, let Ly = K(¥/A) and a € A. Then there is a 8 € La with f* = «, and it
follows that a € (LX)" N K* = ¢ A.
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Furthermore ¢ and ¢ are obviously inclusion-preserving, i.e., we have

Lcl = A C Ap

<673) ACA = LanCLa.

Now we show )¢ L = L for L € K. By assumption, Gal(L/K) is a finite abelian group
of exponent n. We use

Theorem 6.8 (Main theorem on finite abelian groups) Every finite abelian group is a
direct product of cyclic groups.

Proof Follows from the theory of principal ideal domains — here Z.

Hence we have

(6.7.4) Gal(L/K) = é A

with cyclic groups A;, which are necessarily of exponent n as well. The projections
Gal(L/K) — A;

correspond, by Galois theory, to partial extensions L; C L with Gal(L;/K) = A;
(L; = LA with A} = &;4A4;), and by (6.7.4), L is the compositum of the L;. By
Kummer theory for cyclic extensions (Algebra I, Theorem 20.7) there is a «; € K with
L; = K(/a;) for every i (if L;/K is cyclic of degree m;, we have m; | n, therefore
fm, € pin C K, agd by Algebra I 20.7 there is a 3; € K with L; = L( /[;). Then we

m;

can take o; = 3;""). By construction we have {/a; € L, therefore a; € Ap, therefore
L; € K({/ApL). Thus the compositum L also lies in K({/Ay). From (6.7.1)) follows the
equality.

Now we show ¢ypA = A. Let A = ¢ypA and let L = Lo = A, so that A = Aj. By
(6.7.2) we have A C A, and we obtain a diagram

~ 5 ~
AJE) = (L) N KX (KX —— HYL/K, pn)
Ul
AJ(EX)"
Assume A G A. Then U := §(A/(K*)") is a proper subgroup of
HY(L/K, p1,) = Hom(G, ptn)
where G = Gal(L/K). Let

H={oceG|x(o)=1 forall xeU},
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By the following Theorem (see Remark [6.11]) we have H # 1. On the other hand we
have

ceH & 5(a)(a) forall aeA
(C/a) \/_ forall aeA
& o=1,

since L = K ({/A) — contradiction!. Thus we have A = A, i.e., ¢t A = A, and we proved
Theorem 6.7

Definition 6.9 For a finite abelian group A
AY := Hom(A,Q/Z)
is called the Pontrjagin-dual of A.

Theorem 6.10 (Duality theory for finite abelian groups) Let A be a finite abelian
group.

(a) AY is non-canonically isomorphic to A. In particular, A is again finite and abelian
and has the same order as A

(b) If we have A of exponent n € N, then we have

AY = Hom(A,Z/n7Z) .

(¢) The canonical map
A\/\/

pa @ A
a (x = x(a))

—
>
is an isomorphism.

(d) If
0ASBACc S0

is an exact sequence of finite abelian groups, then
Vv
0V S BYS AY 5o

is exact (For an arbitrary homomorphism ¢ : A — B let ¥ : BY — AY be defined by
BY 3> xr— xope AY).

(e) For a subgroup U < A let
lZ{XEAV\X’U:O}-

Then the assignment
U Ut

is an inclusions-reversing bijection between the subgroups of A and the subgroups of AY.
Thus we have AV /U+ = UV.
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Remark 6.11 From this theorem follows the relation H # {1} in the proof above: If
we identify both cyclic groups p,, and Z/nZ, then we have

Hom(G, p,) = Hom(G,Z/nZ) = G" .
If we pass to additive notation, then, for U £ GV, we obtain the exact sequence
0=-U—-G' -G /U0
with non-trivial G¥/U and an exact sequence
0— (GY/U)Y -G -U"—0

where (GY/U)Y is non-trivial. Therefore the map G¥Y — U" (which maps ¢ € (GY)"
to ¢|U) has a non-trivial kernel. If we use the isomorphism g : G = GV, then there

is a non-trivial @ € G with pg(a)(x) = x(a) = 0 for all x € U. This gives a non-trivial
element in the group H above.

Proof of Theorem [6.10} (b): If A has the exponent n, then for x € AV we have

(nx)(a) =n - x(a) = x(na) = x(0) = 0.

In particular, y has image in Q/Z[n] = Z/nZ (compare [4.22)), and A" is again of exponent
n.

In the following it suffices to consider groups of a fixed exponent n.

(a) For Z/nZ we have canonically

Z/nZ = Hom(Z/nZ,Z/nZ) = (Z/nZ)"
b o (g with (D) = 0

(therefore ¢y(a) = ab). For a finite cyclic group A follows a non-canonical isomorphism
A = AV by choice of an isomorphism A = Z/nZ. By Theorem , for an arbitrary finite
abelian group A, there are cyclic subgroups Ay, ..., A, with

A=Ad...DA,.
But there is a canonical isomorphism

Ale... oA S5 (A1e...8A,)Y
(X155 Xr) = x with x(a1,...,a,) = X xi(a;)

i=1

(6.10.1)

This implies (a).

(c): This follows easily for cyclic groups A: if A is of the order n and a is a generator, then,
for every m € Z/nZ there is exactly one xm with xm(a) = ™. Then the homomorphism

gOAiA—>AVV
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is injective, since we have x7(ka) = k # 0 for ka # 0. Since AYY has the same order as
A, @4 is bijective. The case of an arbitrary A follows again with (/6.10.1]).

(d) The exactness of

0— v 5 BY e A
follows easily. (Later we will prove this in the general frame of R-modules). Then o
is surjective, since we have |AY| = |A| = |B|-|C|™' = |BY|-|CY|™' = |BY/C"Y|, the
injection BY/CY < AY (homomorphic theorem!) is therefore an isomorphism.

(e): For subgroups U,V C A, the relation
UCV = V-CU"
is obvious. If we define an ‘orthogonal complement’ for subgroups X C AV
Xt={acA|x(a)=0 VyxeX},

we show that
X X+

is an inverse image to U +— U+: The exact sequence
05US A A /U =0
by (d) gives an exact sequence
0— (A/U)Y S AV S UY 0.
But obviously we just have U+ = keri"; this gives an exact sequence
0 UL A S 0Y >0,
where j is the inclusion. By further dualizing we obtain a commutative diagram

0 vV vV AWV 7Y (UJ_)V 0

SDUTZ ZTVJA

U———A

with an exact top row. Obviously we have U+ = ker(jV o ¢4), and U+ = U follows.
In the same way, X+ = X follows for X < AY.
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7 Properties of group cohomology

Theorem 7.1 Let {A; | ¢ € I} be a family of G-modules. Then one has canonical
isomorphisms

(a) HtI(G’ @1A1> = Hq(GaAl)
1€

icl

(b) HY(G, IT A;) = Tl HY(G, A;).
icl icl

Exercise!

Theorem 7.2 If G is a (topological) group and

0—sA—">B- 1.0~

ook b

0 A B’ C’ 0

a commutative diagram of (continuous) G-modules with exact rows.

Then the diagrams
HY(G, C) —2> HIT(G, A)
H9(G, ") - gary(q, A

are commutative for all q.

Exercise!

Proposition 7.3 Let
0>A—->B—->C—=0

be an exact sequence of (continuous) G-modules, and let H < G be a subgroup of G.
Then the diagram

HY(G, C) —= H(G, A)
Res? Res?t1
HY(H,C)—>~ H™(H,C)
Is commutative.

Proposition 7.4 If N <G is a normal subgroup of GG, and the sequence

0—AY = BN 5N -0
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is exact as well, then the diagram

HY(G/N,CN) —2~ HT*Y(G/N, AN)

Inf? l \L Infa+1

HY(G, C) —— H(G, A)

is commutative

Proof Both results follow immediately from the fact that the maps on the cochains
commute with the differentials.

Theorem 7.5 Let A be a (continuous) G-module, and let N < G be a normal subgroup.
If H(N,A)=0fori=1,...,q— 1, and ¢ > 1, then the sequence

0 — HY(G/N,AY) 25 go(@, A) 25 H9(H, A)

is exact.

Proof We prove this by induction on the dimension ¢, using dimension shifting, and
Exercise 1 from Exercise sheet 4 for the initial induction step.

If we tensor the exact sequence
0=>2Z—2Z|G]— Jg—0
with A, we get an exact sequence

0—A—AQRZIG]— AR Jg—=0

|
0 A B C 0
Moreover, since H'(N, A) = 0, we get an exact cohomology sequence
0—=AY - BY 5>V =0
Hence we have the following commutative diagram

0— HTYG/N,CN) 2 goi(@, ) 2% He (N, C)

R

0—= HY(G/N, AN) 5 H9(G, A) —=~ H9(N, A)

which gives the induction step from ¢ — 1 to q.
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In fact, B is cohomologically trivial, so that the exact sequence
0—+A—-B—->C—=0

induces isomorphisms

HI7(G,C) = H(G, A).
Moreover, BY is a cohomologically trivial G/N-module as well, so that the sequence
0—=AY - BY 2V =0
induces an isomorphism
HY™Y(G/N,CN) > HY(G/N, AV)

Theorem 7.6 Let G be a (topological) group, let H < G be a subgroup, and let
f: A — B be a morphism of (continuous) G-modules

(a) Then the diagram
HY(G, A) "~ H9(G, B)

J{Resq iResq

He(H, A) L~ H(H, B)
is commutative.

(b) Assume that N < G is a normal subgroup. Then the diagram

HY(G/N, AN) I~ ge(G/N, BY)

\L Inf? \L Inf?

HY(G, A)— H9G, B)

is commutative.

Proof This follows easily from the definitions.

An amazing property of the connecting morphism is that it is “anticommutative”:
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Theorem 7.7 Assume that the diagram of G-modules and G-homomorphisms

0 0 0

0 A A A" 0

0 B’ B B 0

0 ' C c” 0

0 0 0

is commutative with exact rows and columns. Then the diagram

H™Y(G,C") —— HYG, ")
ié |-+
HY(G, A" —2= H9(G, A

commutes.

Proof Let D be the kernel of the composite map B — C”; thus the sequence
0—+D—B—C"=0
is exact. We define G-homomorphisms

i:A— A® B byi(d)=(a,b), where a (resp. ¥ is the image of ¢’ in A
(resp. of ¥ in B’),

j:A® B — D by j(a,b)=d —dy, where dy (resp. ds) is the image of a
(resp. of b') in D C B.

It is easy to verify that with these definition the sequence
0AS5AeB 5 D0

is exact, and the diagram

Al A Al/ B/l C//

A
T(id,o) T

id

A A B 1 -D B c"
—id i (0,—1id) \L id
Al BI Ol O Cl/
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commutes. Because im(D — B”) Cim(A” — B”) and A” — B” is injective, there is a
G-homomorphism D — A” which extends the above diagram. Similarly, since im(D —
C) C im(C" — C) and ¢’ — C is injective, there is an analogous G-homomorphism
D — (', Since the resulting extended diagram is commutative, it follows from 3.5 that
the following diagram

HY G, C") 2= HY(G, A") —2= HI (G, A)

|

HTYG,C") -~ HY(G, D) —>= Hi (G, A')

|

Hi"Y(G,C") =~ HY(G,C") — > HI*L(G, A')

id id

id

commutes as well, which immediately implies the theorem.
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8 Tate cohomology for finite groups

Let G be a finite group, and let A be a G-module. John Tate observed that one can
extend the series of cohomology groups in positive degrees

HO(G, A), H\(G, A), H*(G, A), ...

by also introducing cohomology groups with negative degrees (these can also be regarded
as homology groups). They can be obtained by a dualizing process, nd one gets, similarly
as before, modified groups C°(G,A) = A for n = 0, and C*(G, A) = Hom(G", A) for
n > 1, and now also groups in negative degrees C™"1(G, A) = Hom(G", A) (so that
C7YG,A) = A), ie., a complex

o C7GA) I o6, A) D 006 A) 2 0NGL A) L G A)

Here the differentials 9" for n > 1 are the known ones, and the differentials 0™ for n <0
are

0%’z = Ne X, where Ngx = 3 oz,

oeG
O le =3 (67 2(0) — x(0))
oeqG
o " x(oy,...,00) = ¥ [0 2(0,04,...,0,)
oelG
+ Y (=Diz(oy,...,000,0,0 001, ..., 00)
i=1

+(=1)""z(0y...,0,,0)], for n > 1.

8.1 For the groups in low dimension we therefore obtain the following modified
cohomology groups:

HY(G,A): Z°=kerd' = A (= H(G,A))
By=imd° = NgA :={Nga|a € A}

Hence HO(G, A) = A /NGA.

HYG,A): Z7' =kerd® = y,A:={a € A| Nga =0}
B l'=imd'=IgA:={(c —1)a|a € A}

Here I C Z[G] is the so-called augmentation ideal, I = { Y neo| ¥ ne = 0}.

Pre: oG
Hence H™ (G, A) = n, A/IGA.
Corollary 8.2 One has canonical isomorphisms
H(G,Z) " H™Y(G,Z) — G™,

where G* = G/[G, G] is the maximal abelian quotient of G.
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Proof Since Z|G| has trivial cohomology for n > 0 (see Corollary [5.14)), the long exact
cohomology sequence for
0—Ic—ZIGl—Z—0

gives an isomorphism

H(G,Z) " H™ (G, I¢).
Since H (G, 1) = I/ 1% (as y.Ig = Ig), it then suffices to construct an isomorphism
Ig/13 = G™.
For this we consider the map
0 G—1Ig/ly , o—o—1+12

Sinceo-71—1=(c—1)+(1—1)+ (0 — 1) (7 — 1), this map is a homomorphism.
Moreover, since I¢/I% is abelian, the kernel of ¢ contains the commutator group [G, G],
which gives a group homomorphism

log : G/[G,G] — 15/ 1%
Now we define a group homomorphism
exp : Ig/I% — G/|G, G|

by usiong that Is is the free abelian group generated by the elements ¢ — 1, where
o € G~ {1}. Hence setting
o—1—0[G,G],

we obtain an evidently surjective homomorphism
I = G/|G,G].

Since
(c—-1)-(r—=1)=(cr—=1)—=(c—1)— (7 —1)

is mapped to
oro G, G =1,

the elements in I lie in the kernel, so that we obtain a homomorphism

exp: Ig/I3 — G/|G, G|
oc—1+1¢ — o,

with the property that logoexp = id and exp olog = id. Therefore the map
log : G/[G,G] — 15/ 1%

is an isomorphism.
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The method used in Corollary is called the method of dimension shifting.
We have a short exact sequences of G-modules

0—Ic—>ZIGl—Z—0

and
02— 2Z|G]— Jg—0

If A is a G-module, we can tensor these exact sequences with A and obtain the short
exact sequences (since Z, I, Z|G] and Jg are free Z-modules)

0= Ic®A—-ZG®A—-A—0

and
0—-A—-ZIGRA—JoRA—D0.

Then these sequences induce isomorphisms

HY(G, A) — H™Y(G, I ® A)

HY(G, Jg ® A) > HTL(G, A)

Writing
A" =JE"® A form >0,

A" =1g"® A for m <0,

and using iteration
HI7™(G, A™) =2 H =D (@, A1) =5 HY(G, A)
and similarly for =1 we get the isomorphism
o HT™™(G,A™) S HIY(G, A)

for m € Z.
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9 Cohomology of cyclic groups

Let G be a cyclic group of order n with generator o. Then, for the group ring Z[G| we
have

n—1 .
Z|G] = .6_90 ZLao"
Ng = 14+o+...+0"!

and, because 0f71 = (¢ — 1)(c* 1 + ...+ 0 + 1)(k > 1), the augmentation ideal is the
principal ideal of Z|G] generated by o — 1, i.e.,

IG:Z[G](O'—l)
Theorem 9.1 Let G be a cyclic group, and let A be a G-module. Then

HY(G,A) = HI"?(G,A) forallq€Z.

Proof It suffices to specify an isomorphism
H NG, A) = HY(G, A).

In fact, given this, the general case follows by dimension shifting. The group Z; of
1-cocycles consists of all crossed homomorphisms of G in A. Therefore, if x € Z;, then

z(c*) = oxz(c" )+ x(0)
= ifc(azk_2) +ox(0) + x(0)
z‘go o'z(o) (k<1), and
(1) = 0,because x(1) = z(1) + z(1).
It follows that

n—1
Ngz(o) => o'z(oc) =z(c") =z(1) =0,
i=0
iLe., z(0) € N A.
Conversely, it is easy to see that, if a € y,A = Z_; is a (—1)-cocycle, then

k=1
z(0) = a, and z(c*) = > o'a
i=0

defines a 1-cocycle.

Therefore the map
x> x(0)

is an isomorphism from Z; to Z_; = y A
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Under this isomorphism, the group R; of 1-coboundaries is mapped to the group R_; of
(—1)-coboundaries:

reR, & x(c*) =o0%a — a with fixed a € A
& x(o)=0a—a
g x(J)Eng:R,l.

Thus for a cyclic group G we have isomorphisms

HO(G, A)
HY(G, A) .

H>(G, A)
H2q+1 (G, A)

111

If
0—A—-B—-C—0

is an exact sequence of G-modules, we can write the corresponding long exact sequence
in the form

H (G, A)——~ H (G, B)

7 T

H(G,C) oY(G,C)

S —

H(G, B) ~— H(G, A)

For the exactness at the term H !'(G,A) note that the isomorphism H!'(G,A) =
H7Y(G, A) from Theorem 9.1/ fits into the commutative diagram

HY(G, A) — H (G, B)
H'(G,A)—— HY(G, B)

so that the kernel of the map below corresponds to the kernel of the map above.

For many index and order considerations the notion of a Herbrand quotient is very
useful.

We introduce it in a more general from:

Definition 9.2 Let A be an abelian group, and let f, g endomorphisms of A such that
fog=go f=0,sothat we have inclusions im g C ker f and im f C kerg. Then the
Herbrand quotient is defined as

(ker f : im g)

D ey n )
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provided both indices are finite.
We are mainly interested in the following special case:

Let A be a G-module with G cyclic of order n. Consider the endomorphisms
f=D=0-1 and g=N=1+0+...+0" !,
where o is a generator of G. Obviously we have
DoN=NoD=0,

and

ker D = A im N = NgA;ker N = y. A, im D = [gA.
Hence if both cohomology groups H(G, A) and H~'(G, A) are finite, then
_ HYG A [HA(G A

qp,N(A) = H-Y(G,A)| |HY(G,A)|

If this holds, we call A a Herbrand module. For these special Herbrand quotients
gp,n(A) we want to use the following notation:

Definition 9.3 Let G be a cyclic group and A a G-module. Then

_H(G, )| |HA(G, A)
[H(G,A) ~ [HY(G, )|

h(A)

These special Herbrand quotients h(—) are multiplicative:
Theorem 9.4 Let G be a cyclic group and
0—-A—-B—=-C—=0
an exact sequence of G-modules. Then
h(B) = h(A) - h(C)

in the sense that if two of these quotients are defined, then so is the third, and equality
holds.

Proof Consider the long exact cohomology sequence, written as the hexagon

HYG, A) L~ (G, B)
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If we write F; for the order of the image of f;, then

|[HY(G,A)| = Fo- Iy, [HY G B)| = FK-F, |[HYGC)| = E-F,
HYG,A)| = Fy-F, |HYG.B)| = Fi-Fs, |H(G.C) = Fs-F,

and therefore
(9.4.1) |[H WG, A)|-|H(G,C)|-|H°(G,B)| = [H (G, B)| - |H*(G, A)| - |[H*(G, C)],

Hence whenever two of the three quotients h(A), h(B), h(C) are defined, then so is the
third, and the identity (9.4.1) implies the formula h(B) = h(A) - h(C).

Another special case of a Herbrand quotients occurs when A is an abelian group and f
and g are the endomorphisms f = 0 and g = n (n a positive integer), i.e., g is the map
‘multiplication by n” a — n-a € A. Then we have

(A:nA)

(9.4.2) Gon(A) = A

(hWA={a€A|ln-a=0}).

In fact, this is just a special case of what we considered above:
Proposition 9.5 If the cyclic group G of order n acts trivially on A, then
B(A) = qon(A).
In particular, the Herbrand quotients ¢, are multiplicative:
Proposition 9.6 If 0 - A — B — C — 0 is an exact sequence of abelian groups, then
Qo.n(B) = qo,n(A4) - 90,0(C)

this again in the sense that the existence of two of these quotients implies the existence
of the third.

Proposition 9.7 If A is a finite group, then we always have

Proof Because of the isomorphisms im f = A/ker f and img = A/ ker g,
|A| = [ ker f| - [im f| = |ker g| - [im g,
which implies the claim.

In particular, a finite G-module A has Herbrand quotient h(A) = 1. This remark,
together with the multiplicativity shown in (9.4 implies the following:

If A is a submodule of finite index in the G-module B, then
h(B) = h(A).
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It is in fact this statement that is most useful in applications of the Herbrand quotient.
If the direct computation of the order of the cohomology groups of a G-module B is not
possible, the above fact allows us to consider without loss an appropriate submodule
A, provided it has finite index. This type of consideration historically motivated the
definition of the Herbrand quotient.

In the following we will show how to determine h in case of a cyclic group G of prime
order p from the Herbrand quotients ¢p,. For this we need

Lemma 9.8 Let g and f be two endomorphisms of an abelian group A such that
fog=go f. Then
G0.7(A) = q0.4(A) - q0.r(A)

where again all three quotients are defined whenever any two of them are.

Proof Consider the commutative diagram with exact rows

0— g(A) Nker f —> g(A) —L= fg(A) —=0

| L,

0 ker f A

We obtain the exact sequence
0 — ker f/g(A) Nker f — A/g(A) = f(A)/fg(A) =0,

so that

(A: fg(A)) _ (A:9(4))-|g(A) Nker f|

(A f(A4)) | ker f|

If we observe that

ker fg/ker g = g~ (9(A) Nker f)/g7'(0) = g(A) Nker [,

we in fact get

[kergf|  [kerg] | ker f|

It is easy to verify that all three quotients are defined, if two of them are.

(A:9f(4) _ (A:g(4) (A:f(4))

Now we prove the important

Theorem 9.9 Let G be a group of prime order p and let A be a G-module. If g ,(A)
is defined, then g, (A%) and h(A) are also defined and we have

WA = qop(A) [a0,(A) .
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Proof Let o be a generator of G and let D = ¢ — 1. Consider the exact sequence

0 A% 5 AR 1,450,

From the fact that I A is a subgroup as well as a factor group of A, we conclude imme-
diately that if go,(A) is defined, then go,(IgA) is also defined. Hence as a consequence
of , qop(A%) is also defined, and we have

(9.9.1) Qop(A) = QO,p(AG) “qop(lcA).
Since G acts trivially on A%, it follows from [9.5| that go,(AY) = h(A).

To determine the quotient gg ,(/A) we use the following interesting trick. Since the ideal
Z - Ng = Z(X'~, o) annihilates the module I4A, we can consider IgA as a Z[G]/Z - Ng-
module. Now the ring Z[G]/Z - N¢ is isomorphic to the ring Z[X]/(1 + X + ...+ X?™!)
with an indeterminate X. But the latter is isomorphic to the ring Z[(] of integral elements
of the field Q(¢) of p-th roots of unity (¢ a primitive p-th root of unity), and the map
o +— (¢ induces an isomorphism Z[G]/Z - Ng = Z[(]. In Z[(] we now have the well-known
decomposition p = (( — 1)P7! - ¢, e a unit, so that we can write

p=(0c—1)"" g, &unitinZ[G]/Z Ng.

Since the endomorphism induced by ¢ is an automorphism on /A, we find g (IcA) = 1.
If we now apply Lemma [9.8] we obtain

Q.p(IcA) = qo.pr-1(IcA) - o (IcA) = qo,p(IcA)P ™ = 1/qpo(IcA)P .
Since N = Ng is the 0-endomorphism on I A, we also have
Gop(IaA) = 1/qpo(IcA) ™ = 1/qpn(IgA)P ™ = 1/R(Ig A" .
In combination with , this implies
Q05(A%) = h(A%), 4o, (I6A) = 1/h(Tc AV, dop(A) = 0 (AS) IH(IG A

On the other hand, the sequence 0 — AY — A — IoA — 0 gives the formula
h(AP™t = h(AC)P~L . h(Ig AP L.

and the claim h(A)P~! = qo,(A%)?/qo,(A) follows by substitution.

In global class field theory we will apply this theorem to certain unit groups, about
which we only know that they are finitely generated of known rank. We show that this
alone suffices to compute the Herbrand quotient; namely, from we get the following
theorem of C. Chevalley:

Theorem 9.10 Let A be a finitely generated G-module, where G is a cyclic group of
prime order p: If a (resp. ) denotes the rank of the abelian group A (resp. A%), then
the Herbrand quotient h(A) is given by the formula

h(A) = p(p-ﬁfa)/(pfl) _
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Proof We can decompose A into its torsion group Ag and its torsion-free part A; : A =
Ay ® Ay If follows that A® = A§ & A¥. Since A is finitely generated, Ay is a finite
group, rank A; = rank A = a and rank A = rank A% = 3. Thus

h(AP™ = h(A)P™ = qop(AT)P/qop(A1)

where qo,p(A?) = (AY : pA§) = p# and Gop(A1) = (A1 : pAL) = p™.
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10 The cup product

In the previous section we have seen that the restriction and corestriction maps are given
by canonical data in dimension ¢ = 0, and induce corresponding maps on cohomology in
all dimensions. The same principle applies to the cup product, which in dimension 0 is
just the tensor product.

Let A and B be G-modules. Then A ® B is a G-module, and the map (a,b) — a ® b
induces a canonical bilinear mapping

A% x B - (A® B)Y,
which maps NgA x NgB to Ng(A ® B). Hence it induces a bilinear mapping
H°(G,A) x H(G,B) - H*(G,A® B) by (a,b) = a®b.

We call the element a @b € H(G, A ® B) the cup product of a € H°(G, A) and
b € H°(G, B), and denote it by -
aUb=a®b.

This cup product in dimension 0 extends to arbitrary dimensions:

Definition 10.1 There exists a uniquely determined family of bilinear mappings, the
cup product

U: HP(G, A) x HY(G, B) » H"(G,A® B),p.q € Z,

with the following properties:

(i) For p = g = 0 the cup product is given by
(@b)—~aUb=a®b, ac H'G,A),bc H (G, B).

(ii) If the sequences of G-modules

0>A—-A —-A"=0
0 >A®B—>A®B—A"®B—0

are both exact, then the following diagram commutes

HP(G,A") x HY(G, B) —2= H"*1(G, A" @ B)

S lé

HPY(G, A) x HY(G, B) —= H"*"1(G, A ® B)

so that §(@ Ub) =da Ub,a’ € HP(G,A"),bec HI(G,B).
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(iii) If the sequences of G-modules

0=-B—-B —=B"=0
0ARB—->AQB - A B" =0

are both exact, then the following diagram commutes

H?(G,A) x HY(G,B") —— H"*(G,A® B")

| o

H?(G, A) x H**(G, B) —> HP*"* (G, A® B)

i.e., we have 8(@UB") = (—1)P(@Udb’),a € H?(G, A),b € Hi(G,B").

The factor (—1)? in the last diagram is necessary and results from the anticommutativity
of the connecting homomorphism d, see below. One cannot define a reasonable cup
product omitting this factor.

As with the general restriction maps, we obtain the general cup product from the case
p =0, ¢ = 0 by dimension shifting.

We recall that we identify the G-modules A ® B and B ® A as well as the G-modules
(A® B)®C and A® (B® (). This automatically leads to a corresponding identification
of the cohomology groups of these G-modules. In particular, we can write:

A@B=J®..0Js®A® B =(A® B)P and
ARBI=A® Jc®..0Jg@B=Jg®...0 Je ® A® B=(A® B)?

for p,q < 0, and analogously for p,q < 0 with I5 in place of J;. We will use this freely
below.

Because of Proposition 3.15 we may start with the case ¢ = 0, p = 0 and determine the
cup product by the following commutative diagram:

(10.1.1) H(G, AP)x H°(G, BY) —> H(G, (A ® B9)?)= H°(G, A? @ BY)

e

H?(G,A)x H°(G,B?%) —~ H?(G,(A® B)") = H’(G,A® B9)

1\L igq J{(l)p,q(;q

H?(G,A)x HI(G,B)—"= H"*(G,A® B)
It follows immediately from the conditions (i), (ii) and (iii) that the cup product is

unique. We use this fact to give an explicit description of the cup product in terms of
cocycles in the special case (p,q) = (0,¢) and (p,0):
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Proposition 10.2 If we denote by a,, (resp. b,) p-cocycles (resp. g-cocycles) of A (resp.
B), and by @, (resp. b,) their cohomology classes, then

60U5q2a0®bq and EPUBOICLI,@I)().

For the proof note that the products @y Ub, and @, Ub, defined here satisfy the conditions
(i), (ii) and (iii) for (0,q) and (p,0) respectively. This can be seen directly from the
behaviour of the cocycles under the corresponding maps. Now if we consider the lower
part of the diagram for p = 0, resp. the upper part for ¢ = 0, then we see that
the product defined by the commutative diagram (10.1.1)) must coincide with the one

defined by [10.2]
Thus everything boils down to showing that the product maps defined by ((10.1.1))

HP(G, A) x HY(G, B) = H""(G,A® B)
satisfy the conditions (ii) and (iii). To this end, consider the exact sequences

0—>A—->A —>A" -0,
0 >A®B—>A®B—A"®B—0

and
0—-B—>B —>B"—0,

0—-A®B—-AQB - A B"—=0.

From these we get by 1.9 und 1.2 the exact sequences

0— A7 — A1 — A" — 0
0—-(A®B)!— (A®B)Y— (A”®B)1—0
and
0—B? - B?— B —0
0> (A®B) - (A®B)P - (A® B")? -0,

and we have the diagrams

HP(G,A") x H(G, B?) S H?(G, (A" @ B)Y)
(—1)Paga
(1,6) HPY(G, A) x H(G, BY) o HPY(G, (A® B)9)
(1,67)
Hp(G, A”) X I‘Iq(G7 B) & Hp+q(G7A” ® B) (~1)P+1)-aga
HPY(G, A) x HY(G, B) o HP Y (G A® B)
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and

H(G, A?) x H1(G, B") - HY(G, (A® B")")
&P
(57,1) HO(G, AP) x H™Y(G, B) = HY(G, (A ® B)P)
@,1) L
HP(G,A) x HY(G, B") = HP9(G,A® B") o
HP(G, A) x H1*Y(G, B) = HPH (G A® B).

Here the left sides in both diagrams commute for trivial reasons. The right sides are
composed from ¢ (resp. p) squares as in 3.6, thus they commute as well. The front and
back sides commute by definition of the cup product, and the upper squares
commute because and the remarks following it. Since the vertical maps are bijective,
the commutativity of the upper squares implies the commutativity of the lower squares.
This completes the proof.

The axiomatic definition of the cup product in [I0.1]does not give us an explicit description
of it, i.e., given two cohomology classes in terms of cocycles, we are for now not in a
position to decide which cocycle represents their cup product in general. Only for the
cases (p,q) = (0,¢) and (p,0) we have such a description by The attempt to give an
explicit description of the cup product for general p, ¢ (in particular for p < 0 and ¢ < 0)
leads, however, to major computational problems. Thus we find ourselves in a situation
which is similar to that of the restriction map, which admits a very simple description in
dimensions ¢ > 0, but not for negative dimensions. Nevertheless in both cases we will
need explicit computations only in low dimensions; given these, one can manage knowing
the functorial properties of these maps.

Before giving explicit formulas for small dimension, we want to convince ourselves that
the cup product is compatible with the usual cohomological maps defined above.

Proposition 10.3 Let f: A — A’ and g : B — B’ be two G-homomorphisms, and let
f®g:A® B — A'® B’ be the G-homomorphism induced by f and g. If @ € H?(G, A)
and b € HY(G, B), then

@ Ugh) = Fog@ub) e (G, A'® B').

This is completely trivial or p = ¢ = 0, and follows in general from a simple dimension
shifting argument. We have demonstrated this technique already frequently enough to
leave the details to the reader.

Proposition 10.4 Let A, B be G-modules, and let g be a subgroup of G. Ifa € H?(G, A)
and b € HY(G, B), then

res(@Ub) =resaUresb € H"™(g,A® B),
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and ~ -
cor(resaUb) =aUcorb € H"*(G,A® B).

This follows again from the case p = ¢ = 0 by dimension shifting. In case p = ¢ =0
the first formula is immediate. For the second, let a € A% and b € BY be 0-cocycles
representing @ and b respectively. By definition 4.12 of the corestriction in dimension 0,

we have -
cor(resaUb) = cor(a®b+ N,(A® B))

= Y o(a®b)+ Ng(A® B)
oceG/g

= Z a®06+Ng(A®B)
ceG/g
= a®( >, ob)+ Ng(A® B)
oeG/g
= aUcorb.

We show that the cup product is anticommutative and associative:

Theorem 10.5 Let a € H?(G,A),b € HY(G, B), and ¢ € H"(G,C). Then
aUub=(—1)"(bua) € H"*(G,B® A),

and
(@ub)Ue=au(bUe) € H™""(G,A® (B® ())

under the canonical isomorphisms H?™9(G, A® B) = HP*1(G, B® A) and HP T (G, (A®
B)® ()= HM(G,A® (B® (C)).

Again, this is trivial for p = ¢ = 0, and follows in general by dimension shifting.

We now want to compute some explicit formulas for the cup product. For this we denote
by a, (resp. b,) p-cocycles of A (resp. g-cocycles of B), and write @, (resp. b,) for their
cohomology classes in H?(G, A) (resp. HY(G, B)).

Lemma 10.6 We have @, Ub_; =Ty € H°(G, A ® B) with

zo=Y_ ai(1T) @ Tb_4
TG

Proof By 3.14 we have the G-induced G-module A’ = Z[G]® A and the exact sequences

0—>A—-A A0,
0 >A®B—>A®B—A"®B—0.

We think of A embedded in A" and A® B embedded in A’® B; to simplify notation we do
not explicitly write out these homomorphisms. Because of the vanishing H'(G, A") = 0,
there is a 0-cochain af, € A" with a; = Jday, so that

(10.6.1) a)(t) =tay—ay forall 7€G@G.
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Let aj € A" be the image of aj in A”. By definition of the connecting homomorphism
d, we have @; = d(afj), and we obtain

- — = (10.1) (10.2)

an—l == 5(&6’)Ub_1 = 5((76’U5_1) = (5((18@51)_1):8(@3@%_1)

= Ng(ay®b_1) = Z Tag @ Tb 4 ®) Z (a1(7) + ag) ® 7H_4

TEG TEG
= Z(al(T) ®Tb_1) +(l6®Ngb_1 = Z(al(T) ®7'b_1)
TeG TEG

because Ngb_; = 0.

In the following we restrict to the case B = Z and identify A® Z with A via a®@n — a-n.
Recall that from 3.19 we have the canonical isomorphism

H™(G,7) = G™.
If o € G, let @ be the element in H~2(G,Z) corresponding to o - G’ € G#P.

Lemma 10.7 @, Uo = ay(0) € H (G, A).
Proof From the exact sequence
0 A1 > AQZG]| = A—=0

we obtain the isomorphism H~'(G, A) % H°(G,A ® Ig). Thus it suffices to show
d(@ Ua) = 0(ai(0)). Using the definition of 0, we now compute

6(ar(0)) =To with zo=> Tai(0)@T.

T€EG

On the other hand, the proof of 3.19 shows that under the isomorphism H~2(G,Z) RN
H (G, I¢) the element & goes to 6 = o — 1, hence we have

(10.1)

6(a Vo) —(@Ué@)=-auU(c—1)=7,.

For the cocycle yo we obtain from [10.0]

Yo=—> a(n)@7(c—1)=> ar(1)®7—> ai(r)@70.

TEG TG TEG

The 1-cocycle a1 (1) satisfies a1(7) = a1(70) — Tay (o). Substituting this into the last sum,

we find
Yo= > Tai(0)®70.

T€G
Therefore yo — xg = > ,c 7a1(0) @ T(6 — 1) = Ng(ai(0) ® (0 — 1)), which shows that
TO — go.
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The following formula [10.8|is of particular interest for us. Note that if we take an element
@ in the group H%(G, A), it provides us with the homomorphism

aU: H*(G,Z) — H(G, A),

which maps each & € H~%(G,Z) to the cup product @, Ua € H°(G, A); we thus get a
canonical mapping from the abelianization G* to the norm residue group A¢/NgA. In
class field theory we will consider a special G-module A for which the homomorphism will
be shown to be bijective; in fact, the resulting canonical isomorphism G*" = A% /NgA
is the main theorem of class field theory. For this the following proposition will be
important.

Proposition 10.8 We have G, UG = Y. as(T,0) € HY(G, A).

Proof We consider again the G-module A" = Z[G] ® A and the exact sequence 0 —
A— A - A" -0 (A =Js®A). Since H*(G, A') = 0 there is a 1-cochain a] € A}
with ay = 0d] i.e.,

(10.8.1) az(t,0) = Tai (o) —ay(r- o) +aj(7).

The image a} of @} is a 1-cocycle of A” such that @, = d(af). Therefore

nus = @) ue " 5@ ue) " S@e) = 0o = T o)
B2 S o)+ S dr o) = % di(r) = 5 ax(r,0).
T7€G T7€G T7€G T7€G
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11 The corestriction

Similar to restriction, we define corestriction using an axiomatic approach:

Definition 11.1 Let G be a finite group and let g be a subgroup of G. Then core-
striction is the uniquely determined family of homomorphisms

cor, : Hi(g,A) — HY(G,A), q€Z,
with the properties:
(i) If ¢ = 0, then
corg : H(g, A) — H°(G, A), a+ N;A — Ngya+ NgA (a € AY).

(ii) For every exact sequence 0 - A — B — C' — 0 of G-modules and G-homomorphisms,
the following diagram is commutative

Hq(ga C) 46>Hq+1(g714)
lcorq lcor(ﬁ_l
HY(G,C)— HI(G, A).

Exactly as for the restrictions, the homomorphisms cor, arise from the corestriction corg
in dimension 0 by dimension shifting:

From 3.15 we have the isomorphisms
§7: HY(G, A" — HY(G, A) and 67 : H (g, AY) — H%(g, A),
and by (ii) the map cor, is uniquely determined by the commutative diagram
HO(g, A") —"— H'(g, A)
HO(G, A7) -2~ H9(G, A) .

In particular, because of uniqueness and 4.11 we recover the homomorphism cor_;
introduced on p. 38. The fact that (ii) holds is verified in the same way as for restriction
using the following diagram, together with 4.11 and 3.6,

H™'(g,C) 2 H°(g, A1)
R
a1 H~Y(G, 0ot g HO(G, A7+t
.
Hi(g,C) g HH (g, A) (—1yrtiget
HY(G,C) d HTY(G, A).
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We remark that one can define the corestriction for negative dimensions very easily by a
canonical correspondence between cochains, analogously to the restrictions for positive
dimension. However, we will not pursue this further. In view of 4.10 we now want to
prove the following theorem

Theorem 11.2 Let g C G be a subgroup. The homomorphism
kg™ — G

induced by the corestriction cor_o : H2(g,Z) — H~%(G,Z) coincides with the canonical
homomorphism induced by og’ — oG’.

This follows, using the proof of 3.19, from the commutative diagram

lo
H(9,Z) —>—~H '(g,1,) = I,/ I} ~——— g*

lcor_g \Lcor_l l,{

log

H(G,Z) —~ H (G, Ig) = Io/ I} <= G™.

The following relation between restriction and corestriction is important.

Theorem 11.3 Let g C G be a subgroup. Then the composition
HY(G,A) = Hi(g,A) =5 HY(G, A)

is the endomorphism

corores = (G : g)-id .

Proof Consider the case ¢ = 0. If @ = a+NgA € H°(G, A),a € A%, then corg o resy(a) =
corg(a+ NyA) = Ngjga+ NgA = (G :g)-a+NgA = (G : g)-a. The general case follows
from this by dimension shifting. In fact, the diagram

HO(G,Aq) corg oresg HO(G,AQ)

o Jor

Hq(G7A) corg oresq HQ(G7A)

commutes and since the upper horizontal map is (G : g) - id, it follows that the same
holds for the lower horizontal map, i.e., cor,ores, = (G : g) - id.

Because the restriction and corestriction maps res and cor commute with the connecting
homomorphism 4, they also commute with maps induced by G-homomorphisms:
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Proposition 11.4 If f: A — B is a G-homomorphism of the G-modules A, B, and g¢
is a subgroup of GG, then the following diagram commutes

HY(G, A) L~ H9(G, B)

res i T cor res l T cor

Hq(g’A)*f>Hq(g’B)

This is clear in case of dimension ¢ = 0, and the general case follows easily by dimension
shifting. In fact, the homomorphism f: A — B induces a homomorphism f : A? — BY,
and in the following diagram

H°(G, B
\ 50 1rescor
°(g, A7) ! L H°(g, BY)
\ HY(G,B 59
\ ?
H( H(g, B).

all vertical squares are commutative. Hence the commutativity of the lower diagram
follows from that of the upper one.

Since the cohomology groups H?(G, A) are abelian torsion groups, they are direct sums of
their p-Sylow groups, i.e., the groups H?(G, A), of all elements in H?(G, A) of p-power

order:
HY(G,A) = @ HY(G,A),.
P

The group H(G, A), is often called the p-primary part of H?(G, A). For the restriction
and corestriction maps on these p-primary parts we have the following:

Theorem 11.5 Let A be a G-module, and G}, a p-Sylow subgroup of G. Then the
restriction

res : H1(G,A), — HI(G,, A)

is injective, and the corestriction
cor : H1(G,, A) — HY(G, A),

is surjective.
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Proof Since corores = (G : G,) - id, and since (G : G,) and p are relatively prime,
the mapping H%(G, A), = H%(G, A), is an automorphism. Hence if z € HY(G, A),
and resz = 0, it follows immediately from cororesx = 0 that = 0, which shows the
injectivity of res on HY(G, A),.

On the other hand, HY(G,, A) consists of elements whose order is a p-power (cf. 3.16),
so that cor HY(Gp, A) C HY(G,A),. Since corores is a bijection on HY(G, A),, this
inclusion is an equality.

We often encounter the problem that we want to show that certain cohomology groups
vanish. In many of these cases we will use the following consequence of Theorem [11.5)],
which reduces this problem to the case of p-groups:

Corollary 11.6 If for every prime p the group H?(G,, A) = 0 for a p-Sylow subgroup
G, of G, then we have H?(G,A) = 0.

Proof Since res: HY(G,A), — HY(G,, A) is injective, the assumption implies that all
p-Sylow groups H(G, A), are trivial; thus H(G, A) = 0.

We end this section with a generalization of the notion of a G-induced module: we will
use this type of G-modules in global class field theory.

Definition 11.7 Let G be a finite group, and let g be a subgroup of G. A G-module A
is called G//g-induced, if it has a representation

A= @ oD,

ceG/g

where D C A is a g-module and o ranges over a system of left coset representatives of g
in G.

For g = {1} we obviously recover the G-induced modules from 3.9. As a generalization
of the cohomological triviality of G-induced modules, we have the following result, which
is often referred to as Shapiro’s Lemma:

Lemma 11.8 Let A = ®,cq/q0D be a G/g induced G-module. Then
H(G,A) = H'(g,D);
this isomorphism is given by the composition
HY(G,A) = H(g, A) — Hg, D),
where 7 is induced by the natural projection A — D.

We give a proof using dimension shifting. Let A = & ,0,D, where o; ranges over a
system of left coset representatives of G /g, in particular let oy = 1 For ¢ = 0 we define a
map in the opposite direction of the homomorphism

A% /NgA X2 A9/N,A = DI/N,D
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by v : DI/N,D — AY/NgA, v(d+ N,D) = 31", 0;d + NgA. Tt is easy to verify that
(Tores)or =id and v o (T ores) = id. Therefore 7 o res is bijective.

In case of arbitrary dimension ¢ we now set

Aq:JG®...®JG®A Aq:IG®"'®IG®A
Dgzjg®®Jg®D resp. Dngg®®lg®D
Dq:Jg®...®Jg®D Dq:]g®...®]g®D

depending on wether ¢ > 0 or ¢ < 0. Because A = ®]*,0,D we have
Jo=J,® K, resp. Ig=1,®K_,

with the g-induced modules

K, = @r(iZ-aﬁ) and K_; = @T<i2~(ail—1)> .

reG  \i=2 reG  \i=2
With 1.5 and 3.10 we obtain for all ¢ the canonical g-module decomposition
D! =D'¢ C?
for some g-induced g module CY. Using 3.15, we then obtain the diagram

H(G, A%) = HO(g, A1) =~ HO(g, D) —~ H(g, DY)

Zidq ZJ/M Zi&q

HY(G,A) ——=Hi(g, A) = H(g, D),

in which the map 7, o res in the upper row in dimension 0 is bijective, and the following
map 7 is bijective because of 3.7 and 3.13. Since the composite A? =5 DI 25 Da
is induced by the projection A — D, we see that this diagram commutes. Thus the
bijectivity of the upper map p o 7, o res implies the bijectivity of the lower map 7 o res.
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12 Local class field theory |

Let K be a local field of characteristic zero. For any normal extension L/K we let
Hq(L/K) = Hq(GL/K7 LX)

and let
Br(K) = ling H*(Gr/x, L")

L/K
normal

be the so-called Brauer group of K. Note that for Ly/L;/K we have canonical injections
Br(K) < Br(L;) < Br(Lsg).

Theorem 12.1 (So-called second fundamental inequality) For every normal extension
L/K the cardinality |H*(L/K,L*)| of H*(L/K, L*) divides [L : K].
12.2 Recall the following notations: If K is a p-adic local field, then we have
Ok = {x € K | v(z) < 0} the valuation ring.
p={zr € K |v(x) >0} the maximal ideal in Ok.
K = Og/p the residue field of K.
U = O \ p the unit group.
U! = 1+ p the group of principal units.
U™ =1+ p" the higher unit groups.
Let ¢ be the cardinality of K (If f is the degree of K over F,, then ¢ = p/)

We have a direct composition

K> =U x (m),

where () is the infinite cyclic group generated by a prime element 7.

One easily sees:

Proposition 12.3 U/U' 2K and U"/U"' 2 K" for n > 1.

Proof of Theorem First we consider the case where L/K is cyclic of prime degree
p =L : K], and we show that the Herbrand quotient

W(L*) = [H*(L/K),L*| | |[H'(L/ K, L*)|

is equal to p = [L : K.
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In fact the formula [9.9] gives
h(LX)P ™ = qop(B) [qop(L7)
where qq, p is formed with the endomorphisms 0 and p.

Now we have
Lemma 12.4 The group (K*)™ has finite index in K*. In fact
(K ()™ = m- "™ - (K = m- fmly - | (K]

where |p,,,(K)| is the number of m-th roots of unity in K and ¢ is the cardinality of the
residue field K of K.

For the proof we use the Herbrand quotient qq ,, formed by the endomorphisms 0 and m.

Then, by we have
(B (K7)™) = qon (K7 - | (K)]
From the multiplicativity of ¢, we further obtain
Qom(K7) = qom (K™ /U) - qom(U/U") - gom(U™) -

Here we have qom(K*/U) = qom(Z) = m since K* = U x (7), qom(U/U™) = 1 since
U/U™ is finite, and g, (U") = (U™ : UMW) = ¢*(™ by the following Lemma for
sufficiently big n, and the fact that (U’ : U"™™!) = q.

Lemma 12.5 If m is a positive integer, then the map z +— 2™ yields an isomorphism
U" — UnJrv(m)

for sufficiently large n.
Proof If 7 is a prime element of p and x = 1 + an™ € U", then

2" =14+m-ar" + (T;@) 274 ...=1 mod p"tm

and therefore 2™ € U™ for sufficiently large n.

To prove that the map is surjective we have to show that for every a € O there exists an
element x € O such that

14 a- 7" = (1 4 zx™)™

ie., 1+ar™m =1+ ma"z + 72" - f(z), where f(z) is an integral polynomial in X. If
we set m = un®™ 4 € U, we get an equation

—a+u-z+a" . fz) =0
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If n > v(m), Hensel’'s Lemma gives a solution x € O.

We now conclude as follows. By Theorem [9.9 we have
W)™ = qop(K™) /q0p(L7) -
Using Lemma [12.4] we get
Gop(K7) = (K" : (K*)") /| (K]

U
p'quP

(L7 2 (L)) /(L))
_ p_qu(P)

qoyp(LX )

If f=[L: K]|is the inertia degree and e is the ramification index, then p =e- f, q;, = q};
and v (p) = evk(p).

Substitution in the above formula yields
h(Lx)pfl — P qI;(UK(P)/pq;f'UK(P) = pP1

ie. h(L*) = p.

The general case follows from this by purely cohomological methods. Since the Galois
group Gk is solvable (see below), there exists a cyclic intermediate field K’ over K of
prime degree K C K’ C L. Since H'(L/K') = 1, the sequence

1— HX(K'/K) 2% H*(L/K) 2% H(L/K)

is exact (see Theorem |7.5]).

This shows that
|H*(L/K)|/|H*(L/K")| - |H*(K'/K)|.

We have already shown that |H?*(K'/K)| = [K’: K|, and when we assume by induction
on the field degree that |[H*(L/K)|/[L : K], then it follows that
|H*(L/K)|/[L: K']-[K': K] =[L: K].

The above proof makes use of the solvability of local Galois groups, which follows
immediately from the fact that between K and L one has the cyclic inertia field K'/ K,
and above K’ the tamely ramified cyclic extension K” which is the ramification field,
over which L has p-power degree.

Now we discuss a special case of local class field theory, the unramified class field theory.

An extension L/K of local fields is unramified, if a prime element 7 in K is also a prime
element in L. This is equivalent to the statement that the degree [L : K] is equal to the
degree [L : K] of the residue fields.
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An unramified extension L/K is normal, and there is a canonical isomorphism

GL/K L) Gf/??

sending o € Gk to the map o : L — L with o(a) = ga = oa mod p.

Recall also that the Frobenius automorphism ¢,k € Gk is the preimage of the
morphism ¢ : L — L, @+ @4, where ¢ is the cardinality of K.

The following result is particularly important both in local and global class field theory.

Theorem 12.6 Let L/K be an unramified extension. Then for the group of units Uy,
one has
HY Gk, UL) =1 for all ¢.

Proof If we identify G 7 with Gk, then

1-sUl=-U, —-L" =1
is an exact sequence of G -modules. Since H(G /F,ZX) = 1 by Hilbert’s Theorem
90, it follows that H(Gr,k,Ur) = HY(Gr/k,U}).

A prime element m € K for pg is also a prime element of py, Thus the map
Urt' 5L, 1+ar™'—a mod P,

(for a € Or) defines a G'p/g-homomorphism, and from the exact sequence of Gy k-
modules B
1= U U ST =0

we obtain, using that H9(G/k, L") = 0 for all ¢ (note that G /x = Gz /%, the isomor-
phism
HQ(GL/K7 Uz) = Hq(GL/K7 Ug_l) .

This implies that the injection U} — U}, induces an isomorphism
Hq(GL/K, UE) — Hq(GL/K, UL> .

Un+v(m)

If m is a positive integer, the map z — 2" defined an isomorphism U} — U ,

provided n is sufficiently large (see [12.2]).

Hence we have a homomorphism
HY(Grk,Up) = HY(Grjk,UL),
and an isomorphism

HY (G, UP) 25 HI(Gpype, U™
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Consider the diagram

HY Gk, UT)

Hq<GL/Ka UL)

HY(G i, UL ™) —= HY(G i, UL)

This diagram commutes, and all maps except for the right vertical map are known to be
bijections. Hence is follows that the map

HYGrk,Ur) = HY(Gpk,UL)

that sends a cohomology class ¢ to its m-th power ¢ is a bijection, too, for all m.
But the elements of HY(Gp,x,Ur) have finite order (see [5.17)), so that we must have
Hq(GL/K7 UL) =1L

For ¢ = 0 we obtain
UK = NL/KUL .
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13 Three Theorems of Tate

In this chapter we present three important Theorems by Tate.

Theorem 13.1 (Theorem of Cohomological Triviality) Let G be a finite group, and let
A be a G-module. If there is a dimension gy such that

H®(g,A) = H**"' (g, A) =0

for all subgroups ¢ C G, then A has trivial cohomology, i.e., H(g, A) = 0 for all
subgroups g C GG and all q € Z.

Proof We will reduce the general case to the case of cyclic groups, where the result is an
immediate consequence of Theorem [0.1] It is clear that it suffices to show the following
claim:

If Ho(g,A) = H®%1(g,A) = 0 for all subgroups g < G, then H® (g, A) = 0 =
H®*2(g, A).

Moreover, by dimension shifting, it suffices to consider the case gy = 1. Hence assume
that H'(g, A) = 0 = H?(g, A) for all subgroups g C G. We have to show that

(+) H(g,A) =0=H(g,4)
for all subgroups g C G.
We prove this by induction on the order |G| of G; the case |G| = 1 being trivial.

Hence we may assume that (x) holds for all proper subgroups g of G, and it remains to show
that H°(G, A) = 0 = H*(G, A). This is clear if G is not a p-group, because then all Sylow
groups are proper subgroups, and Corollary shows that H°(G, A) = H3(G, A) = 0.

Therefore we may assume that G is a p-group. Then there exists a normal subgroup
H < G such that G/H is cyclic of order p. By the induction assumption we have

H°=(H,A) = H'(H,A) = H*(H,A) = H*(H,A) =0,
and using exercise 1 on sheet 4 as well as Theorem [7.5] we obtain the isomorphisms
Inf : HY(G/H, A™) = HY(G, A)
forqg=1,2,3.

Now HY(G, A) = 0 implies H'(G/H, A") = 0 hence H3(G/H, A") = 0 by Theorem [9.1]
and so H3(G, A) = 0.

Furthermore, H?(G, A) = 0 implies H*(G/H, A") = 0, hence H°(G/H, A¥) = 0 (by
Theorem . This means AY = Ng/yA” = Ng/u(NyA) = NgA, where we have
used that H°(H, A) = 0, so that A = NyA. Hence H°(G,A) = 0, which proves the
Theorem.

From the Theorem of cohomological triviality we obtain the following result of Tate:
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Theorem 13.2 Let A be a G-module with the following properties: For every subgroup
g C G we have

IH'(9,4)=0
IT H%(g, A) is a cyclic group of order |g|.
If a generates the group HY(G, A), then the cup product map

auv: HY(G,Z) — HY(G, A)

is an isomorphism for all g € Z.

Proof The module A itself is not suitable for the proof, since we need to use the
injectivity of the map Z — A, n +— nay (where a = ay + NgA). Hence we replace A
with

B =A® Z|G|

which we can do without changing the cohomology groups.

In fact, if i : A — B is the canonical injection onto the first component of B, then the
induced map 3
i: H(g, A) — H'(g, B)

is an isomorphism, because Z[G] is cohomologically trivial.

Now choose an ay € A% such that a = ag + NgA is a generator of H°(G, A). Then the
map
f:Z—B, n—n-ay+n-Ng

is injective, because of the second term n - Ng, and induces the homomorphism
[ Hg,Z) = H(g,B).
Using Proposition [10.2] we see that the diagram

HY(G,Z) ™~ Hi(G, A)

oy

HY(G, B)

commutes; thus it suffices to show f is bijective.

This follows easily from Theorem [13.1; Since f : Z — B is injective, there is an exact
sequence of G-modules

(13.1.1) 0—+Z—-B—=C—=0
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Now H™'(g,B) = H '(g9,A) = 0 and H'(g,Z) = 0 for all ¢ C G, which implies that the
exact cohomology sequence for (|13.1.1)) has the form
0= H(g,C) = H'(g,Z) -1 H(g, B) — H(g,C) — 0.

If ¢ = 0, then f is clearly an isomorphism, hence H= (g, C) = HO(gLC') = 0. Then
by Theorem we get H(g,C) = 0 for all q. Hence it follows that f : HY(G,Z) —
HY(G, B) is bijective for all ¢, as claimed.

From Theorem [13.2) we obtain the following, very important result, again due to Tate

Theorem 13.3 Assume A is a G-module with the following properties. For each
subgroup g C G we have

I H'(g,A) =0
IT H?(g, A) is cyclic of order |g|.
If a generates the group H?(G, A), then the map
aU: HY(G,7Z) — H™(G, A)
is an isomorphism.

Addendum: If a generates the group H?(G, A), then resa generates H%(g, A).

Proof Consider the dimension shift isomorphism
6% - Hq(g,A2) — Hq+2(g,A).
0,
) i

The assumptions I. and II. imply that H~!(g, A%) = 0, and that H%(g, A?) is cyclic
of order |g|. Furthermore, the generator a € H?*(G, A) is the image of the generator

6~ %a € HY(G, A?).
It follows from that the diagram

~au
oG, z)

HY(G, A?)

id 52

HY(G,Z) —“~ H+2(G, A)

commutes. Since (6~2a)u is bijective by Theorem the map au is bijective as well.

Addendum: Since (corores)a = (G : g) - a, the order of the element resa € H?(g, A) is
divisible by |g|, hence res a generates H?(g, A) by II.

For the class field theory, the case ¢ = —2 is particularly important. In this case Tate’s
Theorem yields a canonical isomorphism between

G*™ =~ H72(G,Z) and AY/NgA = H°(G, A)
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14 Abstract class field theory

Definition 14.1 If G is a profinite group and A is a discrete G-module, the pair (G, A)
is called a formation.

Let {Gx | K € X} be the family of open subgroups of G, and write A = A®% (the
fixed module under G'x). Note that Ax C Ay if G, C Gg.

If G, is a normal subgroup in Gk, then Ay is a G x-module, and we write
HYL/K)=HYGr/Kk,AL) .

If N D L D K is a tower of normal extensions, we have inclusions Gy C G C Gg, with
Gy and G, normal in G, and we obtain inflations

H (G, Ap) = HUGp i, AW") 25 HY(G e, Aw)
where we write G x for Gk /Gy, i.e.,
HY(L/K) ™% HY(N/K)

for ¢ > 1. In addition, we also have restriction and corestriction maps

HY(Gn/k,Ay) — HYGnyr, An)

HYGpnjp, Ay) = HY Gy, An),
ie.,
HYN/K) — HY(N/L) and HY(N/L) =% HY(N/K).
Here we only need to assume that N/K is normal.

If both N and L are normal, then the sequence
1 - HY(L/K) ™% HY(N/K) =% HI(N/L)

is exact for ¢ = 1, and exact for ¢ > 1, if HY(N/L)=0fori=1,...,q — 1 (see Theorem
73)

We call a formation (G, A) a field formation, if for every normal extension L/K we
have

HY(L/K)=0.

In a field formation, the sequence
0— H(L/K) ™Y H*(N/K) *% H?(N/L)

is always exact for N D L O K.
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In particular, if N O L D K are normal extensions, then we can always regard H?(L/K)
as embedded in H*(N/K), since the inflation

HA(L/K) ™8 0*(N/K)
Is injective.

If L ranges over all normal extensions of K, then the groups H?(L/K) form a direct
system of groups with respect to the inflation maps, and taking the inductive limit

HA([K) =l H(L/K)

we obtain a group H?( /K) in which all groups H?(L/K) are embedded. For N D L DO K
as above we have

H*(L/K) € H*(N/K) € H( /K).
We will regard all maps here as inclusions.

Given any extension K’ of K, we obtain a canonical homomorphism
(14.1.1) H*( /K) =% H*( /K').

In fact, if c € H*( /K), then there is an extension L O K’ D K such that ¢ is contained
in the group H?*(L/K); hence the restriction map

(%) H*(L/K) =% H*(L/K')

defines an element
res o (c) € H*(L/K') C H*( /K),

This map can easily be seen to be independent of the choice of the field L O K’
The restriction of (x) to H*(L/K) gives back the usual restriction map

H*(L/K) — HX(L/K'").

From this we obtain:

Proposition 14.2 Let (G, A) be a field formation. If K’'/K is normal, then
1= HX(K'/K) & B /K) 2% 52 /K)

is exact.

The fundamental assertion in both local and global class field theory is the existence of a
canonical isomorphism, the so-called “reciprocity map”

(14.2.1) GPx = Ak /N AL
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for every normal extension L/K, where Gp ka» is the abelianization of Gk, and
NpkAp = NGL/KAL is the norm group of Ay.

By Tate’s Theorem we can force the existence of such an isomorphism by postulating:
If L/K is any extension, then

L. HY(L/K) =1

II. H*(L/K) is cyclic of order [L : K].

Then the cup product with some generators a of H?(L/K) gives an isomorphism as in

([[4.2.1)).

However the choice of a is not canonical. In order to get some canonical choice, we
replace II by the condition that there is an isomorphism between H?(L/K) and the cyclic
group ﬁZ/ Z, the so-called “invariant map” which uniquely determines the element
ur/x € H*(L/K) with image ﬁZ/Z.

The crucial point here is that this element remains “correct” when passing to extension
fields and subfields, which we assume by imposing certain compatibility conditions on
the invariant maps.

This leads to the following:

Definition 14.3 A formation (G, A) is called a class formation if it satisfies the
following axioms:

I HY(L/K) = 0 for every normal extension (field formation)

IT For every normal extension there is an isomorphism

invyx: H*(L/K) — 7)Z,

1
L : K]
the invariant map, with the following properties:

(a) If N D L D K is a tower of normal extensions, then

iIlVL/K = iHVN/K |H2(L/K) .

(b) If N D L D K is a tower with N/K normal, then

invy/poresy = [L: K]-invy/k .
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Remark 14.4 II b) becomes almost obvious, if one replaces it by the commutative
diagram

il’lVL/K 1

(14.4.1) H?(N/K) T Z/Z
resg, L[L:K]

invL/K
HY(L/K) w2/

The extension property IT a) of the invariant implies that for H?( /K)U H?*(L/K) there
L

is an injective homomorphism
invg : H*( /K) — Q/Z.
By II b) we get the following for this map: If L/K is an arbitrary extension of K, then
invporesy = [L: K] invg,

where resy, : H?( /K) — H?*( /K) is the canonical map (see (14.1.1))).
Conversely, from the above formula we recover II b), since invy/;, (resp. invy k) is the

restriction of invy, (resp invg) to H*(N/L) (resp. H*(N/K)).

Taken together with the formulas of Axiom II, we obtain the following formulae:

Proposition 14.5 Let N O L D K be extensions with N/K normal. Then
a) invy g ¢ = invy g ¢ if L/K is normal and ¢ € H*(L/K) C H*(N/K).
b) invy/p(resy ¢) = [L: K] -invyk ¢ if c € H*(N/K)

¢) inv /i (corg ¢) = invyyy, ¢ for ¢ € H*(N/L).

Proof a) and b) are just restatements of the formulae in Axiom II.

¢): The commutative diagram immediately implies that the map H*(N/K) Heog
H?(N/L) is surjective. Hence for every ¢ € H*(N/L) we have ¢ = Resy, ¢ for some
¢ € H*(N/K), and hence cor g (c) = cor(K)(res, é) = Kl (see[I1.3). Hence, by b),
invy/k(corg ¢) = [L: K] -invy g (€) = invy/p(res ¢) = invyyp(c).

Now we can distinguish a “canonical” element in each group H*(L/K).

Definition 14.6 Let L/K be a normal extension. The unique element uy,x € H*(L/K)
such that

invL(uL/K) =

[L: K]
is called the fundamental class of L/K.
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From the properties of the invariant maps we obtain

Proposition 14.7 Let N O L O K be extensions with N/K normal. Then
a) up/x = (uN/K)[N:L], if L/K is normal.

b) resL(uN/K) = UN/L
C) COI‘K<UN/L = (UN/K>[L:K]

Proof Since two cohomology classes are equal if they have the same invariants, the
claim follows from:

[N:L}) —

a) invy/g((un/r) [N : L]inv /g (un/k)

N:L
B+ 2=y +2
b) iIlVN/L(I'GSL(UL/K = [LK] 'iIlVN/K(UN/K)))
L:K
- {2+

¢) invwyk(corg(unyr)) = nviyr(une) = ﬁ Tz

L:K
[[N:K]] +Z

= [L . K] . iIlVN/K(uN/K)
= iHVN/K((UN/K)[L:KU .
Now we apply Tate’s Theorem 3.3 and get:

Main Theorem 14.8 Let L/K be a normal extension. Then the map
UL/KU : Hq(GL/K, Z) — Hq+2<L/K) s

given by the cup product with the fundamental class uy,/ € H*(L/K), is an isomorphism
in all dimensions q.

For ¢ = 1,2 we immediately get:

Corollary 14.9 H*(L/K) =0 and HY(L/K) = x(Gr k).

Proof We have H*(L/K) = HY(Gp/k,Z) = Hom(Gp/x,Z) = 0 and HY(L/K) =
H*(Gr/k,Z) = H Gk, Q/Z) = Hom(GL k,Q/Z) = x(GL/k).
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Corollary 14.10 For g = —2 we get
H?(Grk,Z) = G}y and HY(L/K) = A%v/% [Ny A
so that we get an isomorphism
Ok + A%/K [N kA G
This isomorphism is called the Nakayama map.

Using Proposition [10.8] we can give an explicit description of this map as follows:

If u is a 2-cocycle representing the fundamental class ur,/x, then we have
@L/K(UGIL/K) = [ H u(T, U)] “Np/rAp
TEGL/K
for all oG € G = Gy /Gl -
Despite this description, it turns out that the inverse of © x,
(14.10.1) Ak /Nrjx AL — G?};Kv

which is also called the reciprocity isomorphism, is often more accessible and more
important. It induces a homomorphism from Ag onto G%b/ - This homomorphism,
( ,L/K) is called the norm residue symbol. Hence we have an exact sequence

1— NL/KAL —)AK( i/>K) G%b/K — 1,

and an element a € Ak is a norm if and only if (a, L/K) = 1.

We note the following relation between the norm residue symbol ( ,L/K) and the
invariant map invy, g, which will be useful later:

Lemma 14.11 Let L/K be a normal extension, let a € Ak, and @ = aNp kAL €
HO(L/K). 1f x € x(GP)x) = H'(GL/k,Q/Z) is a character, then

X((a, L/K)) = invp /i (aU dy) € ZZ,

L : K]
where 9, denotes the image of x under the isomorphism
HY(Gryic,Q/Z) = H(Gryx, Z)
which is induced from the exact sequence
0-Z—-Q—->Q/Z—0

and the fact that H9(G/k, Q) = 0 for the finite group G k.
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Proof Let 0, = (a,L/K) € G%‘;K ~ H *(Gr/k,Z), and let @, be the element in
H%(G1k,Z) associated to o,.

By definition of the norm residue symbol, we have
a = uL/K U O, € HO(GL/K, AL) .
Since the cup product is associative and commutes with the J-map, we obtain

aUd, = (up/xUT,)Udy =up/x U (T, UJdy)
= UL/KU5(6(1UX).

By Lemma [10.7| we further have
oxUx=xX(0) = - +Z € 2/ = H Gy, Q/2),
where n = [L : K]. Hence, taking
6 : H ' (Gr/k,Q/Z) = H*(Gr/k. Z)

gives
r
5(X(0a)) = n<g + Z) =17r+ TLZ e HO(GL/K,Z) = Z/?’LZ7
and therefore
aUdy =urx U (r+nZ)=up .

From this we get

. _ . r
invy k(@U6y) =7r-invy g = - +7Z = x(0,) = x((a, L/K)) .

The behaviour of the invariant map under inflation (=inclusion) and restriction map
in Axiom II already determines how the norm residue symbol behaves when passing to
extensions and subfields:

Theorem 14.12 Let N D L D K be a tower of extensions with N/K normal. Then
the following diagrams are commutative

a)

( N/E) .

Ak G]\?/K

| i
( L/K)

where 7 is the canonical projection,
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( N/L)

incl TVer
( N/K)
K G]\})/Ka

where the so-called Verlagerung Ver is induced by H2(Gn/x,Z) % H2(G /1, Z),
c)

( a
A G,
NL/KL lfﬁ

where Ny, is the norm and « is the canonical homomorphism induced by G/, — G n/k,

d)

( N/K)
ALK G?\ITD/K
AUK Gg};V/UK

where, for ¢ € G, the maps Ax — A,k and G?\',O/K R ij‘,?v/aK are a — oa and
T+ oTo L, respectively.

All statements essentially follow from the formulas in Proposition [14.7]

We end this section by a discussion of the so-called norm groups.

Definition 14.13 A subgroup I of Ak is called a norm group, if there is an extension
Ap of Ak such that I = Ny Ap.

Lemma 14.14 Let L/K be a normal extension, and let L*® be he maximal abelian
extension contained in L. Then

NN/LAL = NLab/KALab g AK .

Proof The inclusion Np/xAp € Npav g Apae follows from the multiplicativity of the
norm. The reciprocity law gives the isomorphism

A /Ny AL = G = Gy = Ag /Npwv g Apan

and (Ag : NpjxAr) = (Akx @ Npaw gAps) < oo implies that we have the equality
NL/KAL - NLab/KALab.
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15 Local class field theory II

Now we discuss a special case of local class field theory, the unramified class field theory.

An extension L/K of local fields is unramified, if a prime element 7 in K is also a prime
element in L. This is equivalent to the statement that the degree [L : K] is equal to the
degree [L : K] of the residue fields.

An unramified extension L/K is normal, and there is a canonical isomorphism
Grxk — Gk

sending o € Gk to the map @ : L — L with o(a) = ga = oa mod p.

Definition 15.1 The Frobenius automorphism ¢, € Gk is the preimage of the
morphism ¢ : L — L, @+~ @4, where ¢ is the cardinality of K.
From this we get

Proposition 15.2 Let N O L O K be unramified extensions of K. Then
[L:K]
oLk = en/k|iL = en/kGn/p € Gy and oy = PN/K -

Proof This follows easily from the fact that for all x € O we have
(pr/kx) mod Pr = 2% mod Pr, =27 mod Py = (pn/kr) mod Py,
and for all x € Ox we have

(pnyrr) mod Py = 2%  mod Py = 2% EE mod Py = go%/:?m mod Py .

By Theorem we have HY(Gp/k,Ur) = 1 for all ¢. In particular, if L /K is unramified,
then
UK = NL/KUL .

Hence every unit in K is a norm.

We show now that the unramified extensions form a class formation with respect to
the multiplicative group L*. To do this, we have to specify an invariant map satisfying
Axiom II in We proceed as follows. From the long exact cohomology sequence
associated with the exact sequence

15U, L 70

we obtain, using HY(Gr/x,Ur) = 1, the isomorphism

H* Gk, L) = H* Gk, 7).
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Moreover, the exact sequence
0-Z—-Q—-Q/Z—0,
and the fact that Q is cohomologically trivial, implies that the connecting map
HQ(GL/Ka Z) S Hl(GL/K, Q/Z) = Hom<GL/Ka Q/Z) = X(GL/K)

is an isomorphism. If x € x(Gr k), then x(vr/Kk) € LK]Z/Z C Q/Z, and since the
Frobenius automorphism ¢,/ generates the group Gy k, the map

HY (G, Q/Z) = x(Grx) — Z]Z

[L: K]

is an isomorphism, too. Taking the composition of these three isomorphisms

H* (G, L) -2 HX Gy, Z) = HY(Gp i, Q/Z) —2»

[L:K]Z/Z’

we obtain the desired map:

Definition 15.3 If L/K is an unramified extension, define

il’lVL/K : H2(GL/K,LX) — Z/Z

1
[L: K]
to be the isomorphism invy/x =@ od tow
For simplicity we let H(L/K) := HY(Gp/k, L).

Theorem 15.4 The formation (Gr/x,T™) is a class formation with respect to the
invariant map of [15.1]

Proof Axiom I is always satisfied by the Theorem of Hilbert-Noether: H'(L/K) = 1.

For the proof of Axiom II a) and b) we need to prove that the following two diagrams
commute

H(L/K) —"= H*(G i, Z) = H'(Grx, QL) —*~ )

\L incl=inf \L inf \L inf \[incl

H(N/K) "> H*(Gyx, Z) *—= H' (G i, Q/Z) > T2/

H2(N/K) —" H*(Gyxe, Z) == HY (G, Q/Z) 2~

lres \Lres lres \L-[L:K]
T e

H2(N/L) —"> H*(G 1, Z) >~ HY(Gy/1, Q/Z) —*—> 1-7/Z.

NL]
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where N D L D K are two unramified extensions of K.

But the commuting of the two left squares follows from the functoriality of inf and
res, and the middle diagrams are commutative, because Inf and Res commute with the
connecting morphism 9.

To prove the commutativity of the right squares, let x1 € H'(Gr/x,Q/Z) and x2 €
HI(GN/K7 Q/Z)
From we have the formulas

inf x(on/x) = xlenxGnyr) = x(pr/x) , and

resx(gnr) = Xlonw) = x(ehig) = [L Klx(on/x)-

which completes the proof.

From the extension property II a) of the invariant map, we obtain an injective homomor-
phism

invg : HX(T/K) — Q/Z.
This homomorphism is even bijective, since Q/Z = Uy, %Z/Z, and since for every

positive integer n there exists (exactly) one unramified extension L/K of degree n = [L :
K]

Corollary 15.5
H*(T/K)=Q/Z.

If L/K is an unramified extension, the Galois group is cyclic and hence coincides with
its abelianization. Hence the norm residue symbol has a very simple, explicit description:

Theorem 15.6 Let L/K be unramified, and a € K*. Then
(a, L/ K) = o

Proof If x € x(Gr/k), 0y € H*(Gr/k,Z) and a = a - N jxL* € H°(L/K), then
x(a, L/K) =1invy g (@ U dy)

by Lemma [14.10] This formula, together with [15.3] implies that
x(a,L/K) =invy/g(@Udy) =¢od tou(aUd,)
po 5‘(1)(UK(G) +0y) = p(vk(a) - x) = vk (a) - x(or/x)
vg (a

= X(@L/K ).
Since this holds for all x € x(G k), it follows that (a, L/K) = 90271(?)~
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16 Local class field theory IlI
Finally we extend the invariant map to arbitrary extensions of local fields. This relies on
the following result:

Theorem 16.1 If L/K is a normal extension of local fields, and L'/ K is the unramified
extension of the same degree [L' : K] = [L : K], then

H(L/K) = H(L'/K) C H*( /K).

Proof It suffices to show the inclusion
H*(L'/K) C H*(L/K).

In fact, if this holds, then the inclusion must be an equality, because |H*(L'/K)| = [L' : K]
by[15.3] and |H?*(L/K)|/[L : K] by Theorem [12.1]

Butif N =L-L' and L'/K is unramified, then N/L is unramified, too (Note: If T is
the maximal unramified extension of K, then T - L is the maximal extension of L). Now
let c € H*(L'/K) C H*(N/K). Then it follows from the exact sequence

1 - H*(L/K) — H*(N/K) =% H*(N/L)

that ¢ lies in H*(L/K) if and only if res;(c) = 1. Since res;(c) = 1 if and only if
invy,r(resp(c)) = 0 (see|15.1), our theorem follows once we have shown that

1
[N : L]

(16.1.1) invy/p(resp(c)) = [L: K]invy k(c) € Z]Z,

since invy /g (c) € ﬁZ/Z, and and hence [L : K| -invy/g(c) = 0.
Now (|16.1.1]) is a special case of the following Lemma.

Lemma 16.2 Let M/K be a normal extension containing the two extensions L/K and
L'/K with L'/ K unramified. Then N = L - L' /K is also unramified. If c € H*(L'/K) C
H?*(M/K), then res;, c € H*(N/L) C H*(M/L), and

invy/p(respc) = [L: K] -invy g c.
Proof The fact that the 2-cocycles of the class resy ¢ have their values in N>, implies
that res; c € H*(N/L).

Let f be the inertia degree and e the ramification index of the (not necessarily normal)
extension L/K. We think of the valuations vx and vy, as extended to M. Then we have
vy, = e-vg. By definition, the invariant map is the composition of the three isomorphisms
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7,071, and ¢. Hence, to prove the above formula it suffices to check that the following
diagram commutes:

HX(L'/K) %~ H*(Gp k. Z) > H\(G /i, Q/Z) —> 17/ 7.

[L:K]
incl inf inf l incl
H2(M/K) H2(G i, ) HY(Guyx,Q/Z) e Z/Z
resy, e-res e-res l[LK]

H?*(N/L) LHZ(GN/L;Z) L>H1(GN/L;Q/% —— [TI;L]Z/Z

Here it is understood that the lower vertical maps only map the images of the vertical
maps to the cohomology groups in the bottom row.

That the left square commutes follows from the behaviour of the 2-cocycles under the
maps in question.

The middle square commutes because he inflation and restriction maps commute with
the d-maps.

To see that the right squre commutes, we have to consider the equation
_
PN/Ll = PL/K >
which is a generalization of [15.2] But it is easy to see that, if a € L', then
on/L(a) = a” mod Py = a% = mod pLyy
= @i//}((a) :

Now, if x € H'(G//x Q/Z), then

[L:K]-x(ew) = e fx(ewx) =e x(el k)

e x(¢nyuy,,) = e Infx(N/L)
= e-(Resolnf)x(¢n/L)-

Hence the right diagram commutes, which proves the lemma.

From Theorem we have the equality

Br(K) = H( [K) = HXT/K) = |J HAL/K),
L/K

where L runs over the unramified extensions of K. Hence from [I5.5] we get

Theorem 16.3 The Brauer group of a local p-adic field K is canonically isomorphic to

Q/Z:
Br(K) = Q/Z
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Definition 16.4 Let L/K be a normal extension and let L'/K be the unramified
extension of the same degree [L' : K] = [L : K], so that H*(L/K) = H*(L'/K). Define
the invariant map

invL/K : HQ(L/K) — Z/Z

1
[L: K]
to be the isomorphism with

invyk(c) = invy i (c)
for ce H*(L/K) = H*(L'/K).
With the definition of this invariant map we have reached our goal:

Theorem 16.5 Let K be a p-adic number field, let 2 be its algebraic closure, and let
Gr = Gqsik be the Galois group of /K. Then the formation (Gq/x,Q*) is a class
formation with respect to the invariant map defined in [16.4]

Proof Axiom I is satisfied by Hilbert 90: H'(L/K)(= H'(L*/K*)) = 1. The Axiom II
is obtained by passing to the unramified extension of the same degree.

Furthermore the Main Theorem of Local Class Field Theory is

Theorem 16.6 Let L'/K be a normal extension. Then the homomorphism
upkYU: HY(Gr x,Z) - H*(L/K)

is an isomorphism.

For ¢ = —2 we get the local reciprocity law:

Theorem 16.7 For every normal extension L/K we have the isomorphism
u U
G?}K = _2<GL/K7Z) L/TK> HY(L/K) = K*/NpkL*.
Moreover, all properties of the abstract class field theory hold.

For ¢ =1 and 2 we get:
Corollary 16.8 H*(L/K)=1and H*(L/K) = x(Gr/k)
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17 Global class field theory |

In the following we will consider ideles. (Introduced by Chevalley, as so-called “ideal
elements”).

Definition 17.1 Let K be an algebraic number field. An idele a of K is a family
a = (ap), of elements a, € K, where a, is a unit for almost all p.

We also obtain these ideles as follows

Definition 17.2 Let S be a finite set of primes of K. The group

Le =I5 < [T U € TT K
pes pesS p

is called the group of S-idéles of K.
The union
I =Iy I K7,
s p
where S runs over all finite sets of primes, is then the idéle group (group of all ideles)

of K.

The a, are called the local components of the idele, and a, is called an essential
component, if a, is not a unit.

If € K*, then we let (x) be the idele, whose component is x at all places. Note that x
is a unit for almost all p. In this way, K* is embedded canonically into /. The ideles
from K* are called the principal ideles of K.

If S is a finite set of primes of K, we denote by
K®=K*nIy CIy
the group of S-principal idéles.

The elements in K are also called the S-units in K, since they are units for all primes
p ¢ S. In particular, if S = S, is the set of infinite primes of K, then K*= is the usual
unit group Ux = O of K.

Definition 17.3 The factor group
Ckg =1Ix/K”
is called the idele class group.

This will be the group of our main interest.

The connection between the ideles and the ideals of K is the following.
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Proposition 17.4 Let S, be the set of infinite primes of K, and let [Isg’" be the group
of ideles which have units as components for all finite primes. Then we have canonical

isomorphisms
I /I = Jg I )Ige - K* 22 Jx /Py,

where Jg is the group of ideals and Pk is the group of principal ideals.
Exercise!

Unlike the class group Clx = Ji /P, the ideal class group Cx = I /K> is not finite.
However, the finiteness of the ideal class group is reflected in the fact that all idele classes
in Cx can be represented by S-ideles a € I3 for a finite set S of primes:

Proposition 17.5 Let S be a sufficiently large set of primes. Then

Ix = I - K*, and therefore Cx = Iy - K*/K*.
Proof The ideal class group Ji/Pk is finite. Hence we can choose a finite set of
ideals ay, ..., a, which represent the classes in J/Pk. The ideals are further composed

from only finitely many prime ideals P, ..., Bs. Now, if S is any set of primes of K*
containing the primes By, ..., P, and all the infinite primes, then one has in fact

Ix =17 - K*.
For this we consider the isomorphism

I /12 =2 Jy | Pk

(see [17.4). If a € Ik, then the corresponding ideal a = [] p*® lies in a class a; Pk,
pfoo

ie., a =a; - (z), where (z) € Pk denotes the principal ideal given by x € K*. The
idele o’ = a- 27! is mapped onto the ideal A" = | J I P = ;. Since the prime ideal
components of 2; lie in the set S, we have vya;, = 0 for all p ¢ S; thus o’ = a- 27" € I,
acly K*.

Now we study the behaviour in extension fields.

Let L/K be a finite extension of number fields. If p is a prime of K and ‘B is a prime of
L lying over p, we write P /p.

The idele group Ik of K is embedded into the idele group I of L as follows: An idele
a € Ix with components a, is mapped to the idele a’ € I, with components ag = a, for
P’ /p. This gives an injection

I — I; ,

which we regard as an inclusion.

With this identification, an idele a in [y, is in Ik if and only if its components ay lie in
K, (where B/p), and moreover any two primes B and P’ lying over the same p of K
have equal components ayp = ayp € K.
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If L/K is normal and G = Gk is the associated Galois group, I, is canonically a
G-module: An element o € G defines a canonical isomorphism from L,-1q to Ly, which
we denote by o again.

Hence to an idele a € I, with components ayp € L% we associate the idele oa € I, with
components
(O’Cl)qg =00,-13 € L;E

Note that a,-1p € L,—1y is the o~ "PB-component of a, which is mapped by o into L%. If
we take into account that the -component (ca)y of oa is essential if and only if the
o~ P-component a,-1y of a is essential, we immediately see that, when passing to ideals,
the map induced by a — oa is just the conjugation map on the ideal group Jp

Proposition 17.6 Let L/K be normal with Galois group G = G/x. Then

I¢ = I .

Proof The inclusion I C I¢ is easy: If 0 € G, then the isomorphism

Ly-1p — Ly
is a K,-isomorphism (for /p), and if a € Ix is considered as an idele of I, then
(oa)p = oa,-1p = oap = pyp, i.e., ca =a.

For the inclusion I{ C Ik, consider a € I;, with oa = a for all ¢ € G. Then (ca)y =
oa,-1p = a, for all primes B of L.

By number theory, we can regard the decomposition group Gy of ‘B over K as the
Galois group of the extension Ly/K,. For every o € Gy we have o8 = B, and since
agp = 00,1 = Oy, we obtain ay € K, (B/p).

Hence, if o is an arbitrary element of G, then (ca)B = ap = ca,-13 = a,-190 € K,
i.e., two prime ideals P8 and o~ lying above the same prime p of K have the same
components ap = a,-1p € K, so that a € Ik.

It is well-known that an ideal of a field K can become a principal ideal in an extension
field L without being principal ideal in the base field K. The following proposition shows
that the ideles behave differently

Proposition 17.7 If L/K is an arbitrary finite extension, then
L*NIx=K*.

In particular, if a € Ik is an idele of K that becomes a principal idele in L, i.e., a € L™,
then a is already principal in K.
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Proof The inclusion K* C L* N I is trivial. Now let L be a finite normal extension of
K containing L, and let G = G ik be its Galois group. Then I and I, are subgroups
of I;. Ifae L* N I, then Proposition [17.7] shows that a € Izé = K*. Therefore
L* NI = K*, which implies L* NIx C L*NIx = K*.

By we can embed the ideéle class group C'x of a field K into the idele class group Cp,
of a finite extension L, using the canonical homomorphism

LZCK—>CL s a-K*+—a-L*

(a € Ix C I1). To see that ¢ is injective, note that, if the class a- K* € Ck is mapped
to the unit class L* € Cp, so that a- L* = L*, a € L*, then we know by that
ae L*NIg=K* ie,a- K*= K* is the unit class of C.

In the following we view Ck as embedded in Cp via this canonical map, hence as a
subgroup of C. An element a- L* € Cp, (with a € I}) lies in C if and only if the class
a- L™ contains a representative @' from Ix (C I) such that o’ - L* =a- L*.

Theorem 17.8 Let L/K be Galois extension with Galois group G' = G /x. Then Cp,
is canonically a G-module, and
Cg = CK .

Proof If a- L* € Cp, (a € 1), we set o(a- L*) = oga- L*. This definition is independent
of the choice of a € I, and makes Cp, a G-module.

From the exact sequence of G-modules
1L =1, —-C,—1
we obtain the exact cohomology sequence
1= (LY = I¢ - 0¢ — HY(G, L"),

where (LX)¢ = K*, I¢ = I, and HY(G, L*) = 1, so that C¢ = Ck.
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18 Global class field theory II

We will now study the cohomology of the idele groups.

Let L/K be a finite normal extension of number fields with Galois group G = G/x. We
consider the cohomology groups H?(G, I1) of the G-module I, and we will show that
these groups can be decomposed into a direct product of cohomology groups of the local
fields K.

Let S be a finite set of primes of K, and let S be the finite set of primes in L above the
primes in S. For simplicity, we denote the group of S-ideles I also by I7, and call them
the S-ideles of the field L; we will use the same convention in later sections as well.

Thus we have

Ip= 11 Ly II Up =TT IT Lo x IT 11 Us-

Blpes BlpgS pPES P/p pES Blp

We consider the products I} = [Ty/p Ly and Ul = [Iy/, Up as subgroups of I3, where
we think of the elements in I} (resp. in U}) as those ideles which have the component 1
at all the primes of L not lying over p (resp. in addition have only units as components
at the primes of L lying above p).

Since the automorphisms o € G only permute the primes 3 above p, the groups I} and
U? are G-modules.

Thus we have decomposed I? into a direct product of G-modules

=11 =xI]U;.
pes p¢S

For the G-modules I} and I} we have:

Proposition 18.1 Let B be a prime of L lying over p. Then
HY(G,I}) = H(Gg, Ly) ,

where Gy is the decomposition group of B over K, considered also as the Galois group
of Ly /K,. If p is a finite prime unramified in L, then

HY(G,U}) =1

for all q.

Addendum: The first isomorphism is given by the composition
HI(G, IE) == HY(Gy, I2) 25 HY(Gy, L),

where T is induced by the canonical projection 1] — L;E which takes each idele in Ipp
to its P- component.
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Proof If ¢ € G runs through a system of representations of the cosets G/Gy, for
simplicity we write o € G /Gy, then o runs through all distinct primes of L above p.

Hence
= I L= 1[I oLy, and
O’EG/GQg O'EG/qu
Up == H Uggp = H O'Uq3,
O'GG/Ggp UEG/qu

which shows that I} and U} are G /Gg-induced modules.
Applying Shapiro’s Lemma (Lemma [L1.8]), we get
H(G,I}) = H(Gy, Ly )

and
H(G,U}) = HY(Gy, Uy),
where the first isomorphism is the one given in the addendum.

If p is unramified in L, then the extension Lg/K, is unramified, and by Theorem m
we get H1(G,U}) = HY(Gy, Uy) = 1.
By Proposition and the decomposition

=111 <IIU;
pes pgs

the cohomology groups of the idele groups I7 and I, are easy to compute. By the
compatibility of cohomology groups with products (see exercise sheet 5) we get

HYG, If) = [[ HU(G 1)) x T] H(G,U})
pes pgsS

If the finite set S contains all (finite) primes of K which are ramified in L, then
by Proposition [18.1) we have H%(G,I}) = H(Gy, Ly) (P any primes above p), and
HY(G,UY) =1 for each p ¢ S. Therefore

HY(G,I}) = [] H*(Gy. L)
peS

(B any primes above p).
Since I, = Ug If, we also have
HYG, 1) = limHY(G, [5)
% L
— i [ H(Gy, L)

S peS
? Hq(G‘ﬁv L;)

I

(where @& denotes the direct sums of the groups in question, so that almost all components
are zero). So we get
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Theorem 18.2 Let S be a finite set of primes of K which contains all primes ramified
in L. Then

(a) HUG,I7) =TI HY(Gy,Ly)
peS

From the proof and the addendum in we further get:

res

Addendum: The isomorphism (b) is given by the projections H(G, I,) — H(Gsg, Ly),
i.e., the composition

HYG, I1) == HY Gy, ) — HI(Gy, L)

where 7 is induced by the canonical projection I; — Ly which takes each idele to its
PB-component asy.

The following proposition shows how changing the fields affects local components.

Proposition 18.3 Let N O L O K be normal extensions of K, and let '/B/p be
primes of N, L, and K, respectively. Then

(infyc)y = infuy(cp), ce H(Grk,IL),q > 1.
(respc)p = respy(cy), ce H(Gnk,In),
(corgc)y = Xqpcorg,(op), ¢ € HY Gy, In).

For the last two formulas it suffices to assume that only N/K is normal.

For the third formula note that for each prime B/p we choose a prime P’ of N
above P; thus the corestrictions corg, (cy) a priori lie in distinct cohomology groups
H(G Ny yicps Ny ). But we can identify these as follows: Given two primes 9B’ and B" of
N lying over p, there is a canonical automorphism o € G/ interchanging these primes;
given this, the isomorphism Ngf, 5 N, ;m, induces a canonical isomorphism

Hq(GNm,/KP, N;;;/) g Hq(GNo_m,/KéN;m/) .
Hence we may regard cor, (cp) for each J3/p as an element of the group H(G,, /x, Ny )
for a fixed choice of P’/p, and form the sum in the corestriction in this group.

The proof of Proposition uses the general and purely cohomological fact that the
restriction map which occurs when passing to the local components, commutes with the
maps Inf, Res, and Cor.

This is easy to see at the cocycle level for inf and res for ¢ > 1, and for cor if ¢ = —1, 0.
The general case follows by dimension shifting.

Theorem [I8.2] gives the following result, which is also called the Norm Theorem for
ideles.
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Corollary 18.4 An idele a € Ik is the norm of an idele b of I, if and only if each
component a, € K, is the norm of an element by € Ly (B/p), i.e., if and only if it is a
local norm everywhere.

Corollary 18.5 H'(G,I;) = H3(G,I;) = 1.
This follows from Corollary

The fact that H'(G, I) = 1 implies that, with respect to the idele groups, the extensions
L/K form a field formation.

This allows us to regard the cohomology groups H*(G, /K, 11) as the elements of the
inductive limit of all these groups, via the inflations, regarded as inclusions:

H2<GQ/K7 IQ) = U Hz(GL/K7 IL) ;
L
where (2 is the field of all algebraic numbers (the algebraic closure of Q).

In local class field theory we have seen that the Brauer group is generated by all unramified
extensions.

In the global case we have:

Theorem 18.6 Let K be a number field of finite degree over Q. Then we have
BI‘(K) = U HQ(GL/K,LX)

L/Kcyclic

and
H*(Gor,Io)= |J H* G Ip),

L/Kcyclic
where L/K ranges over all cyclic cyclotomic extensions.

We only prove this for I; the case of the Brauer group is similar.

For the proof we use the following:

Lemma 18.7 Let K be a finite extension of Q, let S be a finite set of primes of K, and
let m be a natural number. Then there exists a cyclic cyclotomic field L/K with the
property that

a) m | [Ly : K] for all finite p € S,
b) [Ly : K] = 2 for all real infinite p € S.
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Proof It suffices to prove the lemma for K = Q; the general case follows by taking
composita. More precisely, if N/Q is a totally imaginary cyclic cyclotomic field, such that
for every prime number p above which there is a prime of K in S the degree [Ny : Q] is
divisible by m - [K : Q], then L - N has the desired property.

Let ¢™ be a prime power, and let ¢ be a primitive £"-th root of unity. If ¢ 2 2, then the
extension Q(¢)/Q is cyclic of degree "' - (¢ — 1), and we denote the cyclic subfield of
degree ("' by L({™).

If ¢ = 2, then the Galois group of Q(¢)/Q is the direct product of a cyclic group of order
2 and a cyclic group of order 2”2, In this case we consider the field L(2") = Q(§) with
¢ = ( — ¢7'. The automorphisms of Q(¢) are defined by o, with ¢, (¢) = ¢* with v odd,
and we have 0,(§) = ¢V — (V.

Since (¥ = —1, we have 0,(£) = 0773 (€) and since either v or —v + 2"~' = 1 mod 4,

the automorphisms of L(2") = Q(§) are induced by those with v = 1 mod 4.

Now an elementary calculation shows that the Galois group of L(2")/Q is cyclic of order
2"=2 Moreover, because o_;& = —¢, the field L(¢") is totally imaginary for large n.

If p is a prime number, then the local degree [L(¢")y : Q,] becomes an arbitrarily
high ¢-power, because in any case [Q,(¢) : Q,] becomes arbitrarily big, and we have
[Q,(C) : L(¢")p] < € —1 for odd ¢ and < 2 for ¢ = 2.

If we now consider m = (' ... (%, then the field
L=L(f") - L) - .. - (L(€5°) L(2Y))

gives the wished property, if the n; and ¢ are sufficiently big.

In fact, then for the finitely many primes p € S the local degrees [Ly : Q] are divisible
by each power £, hence divisible by m; L is totally imaginary by the factor L(2'), and
cyclic over Q, since the L(¢™) are cyclic with pairwise coprime degrees.

Now we prove Theorem m We only give the proof for the group H?*(Gq,k, In), since the
case Br(K) is verbatim the same, if one replaces the idele groups I, by the multiplicative
groups L*.

Hence let ¢ € H*(Goyk, Ia), e.8., ¢ € H*(Gr /K, I1/), let m be the order of ¢, and S the
(finite) set of primes p of K, for which the local components ¢, of ¢ are different from 1.

By the above Lemma we find a cyclic cyclotomic L/K with m | [L, : K,] for the finite
p € S and [Ly : K] =2 for real infinite p € S.

If we form the compositum N = L - L/, then
H*(Grx, 1), H(Gryx, It) € H*(Gnyr, In),

and we will show that ¢ lies in H*(Gpk, I1).
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By the exactness of the sequence
1— Hz(GL//K,IL/) — HQ(GL/K, [L) — HZ(GN/L,[N)

it suffices to show that resy ¢ = 1.

But by local class field theory and by [18.2] and [I8.3] we have
respc=1

& (resp ¢)p = res,, ¢, = 1 for all primes P of L

. . . . [Las:Kp]
& 111V]V%,/Lp(ResLq3 cp) = [Lyp 1 Ky NV, /K, = 0V, /K, 6 = IV, K, G B — 0 for

all primes p of K

& C,E.L‘B:K"] =1forallpeS.

But the last property holds, since ¢ = 1 and m | [Ly : K,] for the finite places and
Ly : K,] = 2 for the real infinite p € S.
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19 Global class field theory IlI

We will now consider the cohomology of the idele class groups. In particular, for showing
that we get the class field theory axioms, we have to show that, for a Galois extension
L/K of number fields with Galois group G = Gp/k, that H'(G,Cr) = 1 and that
H?(G,CY) is cyclic of order [L : K.

Consider a normal extension L/K with cyclic Galois group G = Gk of prime order
p.

Theorem 19.1 The idele class group C}, is a Herbrand module with Herbrand quotient

_ |HO(G7 CL)| _
MO el 7

Corollary 19.2 (First fundamental inequality)

|HO(G7 C(L)| = (CK . NL/KCL) =p- ’Hl(GacL)’ > p.

Proof of Theorem Let S be a finite set of primes of K such that
1. S contains all infinite primes and all primes ramified in L/K.

2. I, =17 - L*.

3. Ix = Iy - K*.

Note that, by Proposition such a set S certainly exists.

Then we have
Cp=1I7 - L*/L* =17 /L,

where L® = L* N 17 is the group of S-units, i.e., the groups of all those elements of L*
which are units for all primes 8 of L which do not lie above the primes in S.

From Theorem [9.4] we get
h(CL) = h(I7) - h(L*)™

in the sense that when two of these Herbrand quotients are defined, then the third
Herbrand quotient is defined as well, and we get the above equality.

By Theorem [18.2] the computation of h(I7) is a local question. Let
n be the number of primes in S

N be the number of primes of L which lie over S.

ny; the number of primes in S which are inert.

Since [L : K| has prime degree, a prime which is not inert splits completely, i.e.,
decomposes into exactly p primes of L, so that N = n; + p(n — ny).
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To compute the quotient
h(I7) = [HY(G, ID)|/|HY (G, )],

we have to determine |H%(G, I7)| and |H (G, I7)|.

We do this by making use of the isomorphism H9G, I}) = [[,es H?(Gy, Lg) from Theorem
182

If ¢ = 1, the above isomorphism gives H'(G,I}) = 1, since H'(Gy, Lyy) = 1. If ¢ = 0,
then H°(G,17) = II H°(Gy, Ly), and it remains to determine the order of H%(Gy, Ly),
pesS

which is done using local class field theory. In fact, we have H°(Gy, Lgy) = Gy by local
class field theory.

Hence we have

|HO (G, LY)] = 1 , if the prime p under P splits (because G = 1)
s Lp p , if pisinert (because Gy = G)

With this we get |[H°(G, I?)]| = p™, and since H*(G,I?) = 1, we have h(I?) = p™.

For the computation of h(L®) we use the formula for the Herbrand quotient from Theorem
9.10t By Number Theory, the group L° of S-units in L is a finitely generated group,
and its rank is equal to |S| — 1, where |S| denotes the number of primes in S, and the
group L°)¢ = K% = K* N L® is the group of S-units of K and finitely generated of rank
n— 1.

Hence Theorem [9.10] gives

h(L5) = pr=h=N+1)/(p-1)
pP(n=1)=n1=p(n—n1)+1)/(p—1)
p(nl*l)‘

Since both Herbrand quotients h(I?) and h(L®) are defined, h(C}) is defined as well,
and the above formulas imply

h(Cr) = h(I7) - W(L*) ™ =p.

This implies and [19.2]

We now show the second fundamental inequality
(Ckx : NeCp) <p

for cyclic extensions of prime degree, under the additional assumption that K contains
the p-th roots of unity. In this case L is a Kummer extension: L = K (y/xg) for some
xg € K*. We start with the following lemma:
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Lemma 19.3 Let N = K(¢/z),z € K* be any Kummer extension over K, and let p
be a finite prime of K not lying over the prime number p. Then p is unramified in N if
and only if x € U, - (K})?, and p splits completely in N if and only if x € (K,)?.

Proof Let P be a prime of N over p. Then Ny = Ky (¢/z). If 2 = w-y?,u € U, and
y € K, then Ny = K, ({/r) = K,(¥/r). If the equation X? —u = 0 is irreducible over
the residue field of K, then it is also irreducible over K, and Ny /K, is an unramified
extension of degree p. If X? — u = 0 is reducible over the residue field of K, then it
splits into p distinct linear factors there, since p is distinct from the characteristic of the
residue field, and by Hensel’s Lemma, X? — u = 0 also splits into linear factors over K,
so that Ny = K.

In both cases Ny /p is unramified, i.e., p is unramified in N.

Conversely, if p is unramified in N, then Ny = K (¢/x) is unramified over K,, and we
have ¢/z = u - 7%, where u € Uy and 7 € K, is a prime element (of smallest value 1).
Thus we have z = u” - 27, and therefore u? € Uy, 2*? € (K} )P, i.e., u € U, - (KJ)P.

The prime p decomposes in N if and only if Ny = K,(¢/z) = K, hence if and only if
r € (K )P

Theorem 19.4 (Second fundamental equality) Let L/K be a cyclic extension of prime
degree p. Assume the field K contains the p-th roots of unity, then

|HY(G,Cp)| = (Cx : NgCp) < p.

The difficulty here is that we cannot a priori decide which idele classes in C'k lie in NoCf..
This is completely different from the case of Ik, where by the Norm Theorem for the
idele groups an a € Ik is a norm if and only if it is a local norm everywhere.

Instead we use some auxiliary group F which is constructed such that its elements are

represented by norm ideles, and such that bist index (Ck : F') is equal to p.
Then we conclude by B

(Cx : NoCp) < (Ck: F)=p.
Proof Let L = K(/z¢), 0 € K*. Let S be a finite set of primes of K such that
1) S contains all the primes above p and S...
2) Ig = IZ K™
3) g € K% = I N K* (ie. xg is an S-unit).

Here, 2) can be satisfied by Proposition m, and 3) because zg is a unit for almost all
primes.

Together with S we choose m additional primes a; ...a,, ¢ S that splits completely in
L; set S* =S U{ay,...,a,}. To construct F, we have to specify an idéle group F' C Ik
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whose elements represent the idéle classes of F, it must be sufficiently large to ensure

that the index (Ck : F) is finite and it must be simple enough so that it is possible to
compute the index. These properties are satisfied by the idele group

F=1IE )P <K > 11 U
=1

peS pegS*

To see that F' C Ngly, it suffices by Norm Theorem for ideles to convince ourselves
that the components a,, of each idele a € F' are norms from the extension Ly /K, (B/p).
This is true for p € S, because a, € (K¢ P C Nry/k, L;E; this is trivially true for p = a;,
because a; splits completely so that Ly = K, and it is true for p ¢ S*, because z € U,
by 3) and therefore by Lemma each p ¢ S* is unramified in L = K (y/7), so that
a, € U, C ]\TLP/KPLQX3 by local class field theory. If we now set F' = F - K*/K*, then

F C N¢Cjp, since each idele class @ is represented by a norm idele a € F.

To compute the index (Cp : F), we consider the following decomposition:
(Cx :F)=(I2 K*)K*: F-K*/K*) = (I -K*: F-K*)=(I2): F/(IZ NK*) : (FNK>))

It allows us to split computation of (C : F) into two parts, the computation of (15 : F'),
which is of purely local nature, and the computation of ((Ig N K*): (F N K*)), which
uses global considerations.

(I) Claim: (I3 : F) = [] (K} : (K))? = p*, where n = £5S.
pes

Since S C S*, the map
o: I8 — 11 pr/(KpX)p
pes
a = (ap- (KJ)P)p

P
is surjective, and ker(¢) = {a € Iy | a, € (K} )p forallp € S} = F.
By the local structure of K, we have
(K, (K)7) = p'Iply
(Here we use 3, € K), so that (I3) : F) = p*" [] |p|, ", where n = {S.
peS

Since the primes p ¢ S do not lie above the prime number p, |p|,p =1 for p ¢ S, and by
the product formula
I Il =I1Ipl, =1.

pes P
Hence (I : F) = p*
Calculation of ((Ig N K*): (FNK*))
We have
(K5« (K)P)

(U DK £ (FOE) = (K5 2 (FNE) = pi s
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where K°" is the group of S*-units, it is finitely generated of rank $S* — 1 =n +m — 1.
Moreover K* contains the p-th roots of unity. Hence (K° : (K°")P) = p™*™ on the
other hand,
K*NF = K*N(IDP(KS )P x IT K x 11 Uyp)
pes i=1 pegS*

— KN N (E)PnNEZn N T,
pes i=1 pgs*
— KN N(KPN NG,
pes pg.S*

If we choose the primes ay, ..., a,, splitting in L such that
(i)m=n-—1

(i) (K*-NF: (K%)P) =1

Then we are done.

Lemma 19.5 There exist n — 1 primes of K, ay,...,a,_1 ¢ S that splits completely
in L and satisfies the following condition: (If N = K(¥/x) is a Kummer extension over
K in which all p € S split completely and all p # ay,...,a, 1 are unramified, then
N=K\/r)=K.

Using this subscheme, we finish our proof of second fundamental inequality:

Claim
K0 &N ) G = (K5
peSs pegS*

for S* =SU{ay,...a,_1}.
“D7” it is trivial

“Crlet x € KXN N (K,)PN N Up, and N = K(/x).

pes pgsS*
By Lemma , every p € S splits completely in N, since v € (K, )?. For p ¢ S~
we have x € U, C U, - (K, )P, so every p ¢ S* is ramified in N. Hence by the above
sublemma [19.5] yields = K(y/z) = K, i.e., 2 € (K*)" and since z € U, for p ¢ S5*,
re (K*)PNKY =(K5)P.

We omit the proof of Lemma [19.5

By technical abstract nonsense we can show

Theorem 19.6 If L/K is a normal extension with Galois group G = G /k, then
(i) HY(G,Cr) =1
(ii) |[H*(G,Cy)| divides [L : K].
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20 Global class field theory IV

In order to prove that H*(G,Cp) = R K]
L/K be a normal extension with Galois group G' = G, /K- The exact sequence

Z]7, we need to study idele invariants. Let

1L =1, —-C,—1

induces an injection 0 = H*(Grk, LX) = H*(Gr/k, 1), since H (Gpx,L*) = 1.
From Theorem and the local theory we get maps

HQ(GL/KJL) - EPHQ(G% L‘E) LCNFT ? (Lo KP]Z/Z

~_ ) ?WZ/Z
\\ Z

and define invy g c = X invy, K, ¢, for c € H*(Gp/k,I1) as indicated.
p
Theorem 20.1 H?*(Gpx,L*) C ker(invy k).

Proof One can reduce to the case K = Q, L/Q cyclic cyclotomic extension. Then in
this case this inclusion can be checked explicitly.

Theorem 20.2 (Hasse principle of number fields) For every number field K, we have a
canonical exact sequence

1 — Br(K —>@Br o) WK Q/Z — 0

Proof It is enough to prove that

invL/K ].

(*) 1—>H2(GL/K,LX)—>H2(GL/K,[L) — [LK]

7)7. — 0

is exact, for L/K cyclic.

By Theorem [20.1], (x) is a complex. Since H' (G k,Cr) = 1, the exactness on the left is
clear.

For the surjectivity of inv g, we use the surjectivity of local invariant maps, and this
can be checked explicitly.
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It is enough to show

‘ HQ(GL/K[L)
H2(Gprjk, L*)

<[L:K].

Again , the exact sequence 1 — L* — I, — C, — 1 induces an exact sequence
1 — H*(Grx, L") = H* Gk, 1) = H*(Gr/x,Cr)

H*(Gr/klIL)

H2(Gp r,LX)
from Theorem [19.6l

< |H*(GL/k,CL)| < [L : K|, where the last inequality follows

Therefore ‘

The crucial point to show H?*(Gp/k,CL) = ﬁZ/Z, for any normal extension L/K, is
the following theorem.

Theorem 20.3 If /K is a normal extension, and L'/K is a cyclic extension of equal
degree [L : K] = [L' : K], then

H*(Gryxr,Cr) = H*(Gryx, C1) € H*(Goyx, Ca)

where () is an algebraic closure of K.

Proof We first show H*(Gp/k,Cr) C H*(Grk,Cr). It N = L- L is the compositum
of L and L', then N/L is also cyclic. Now let ¢ € H*(Gp/k,Cr) € H*(Gnk,Cw).

By the exact sequence
1= HQ(GL/K, CL) R HQ(GN/Ka On) =5 HQ(GN/La Cn),

we see that ¢ € H*(Gn/k,Cy) is an element of H*(Gp/k,Cy) if and only if res, ¢ = 1.
To show this, we use the idele invariants.

We have the following exact sequence
(**) 1— HZ(GL//K,L/X) — HZ(GL//K,IL/) i) Hz(GL//K, CL/) — HS(GL//K,L/X)

Since H*(G /i, L") = H'(Gpyk, L') = 1, the map j is surjective. Hence there exists
cE HQ(GL//K,ILI) Q HQ(GN/K,IN) st. B = jC.

Note that 7 commutes with inflation and with restriction, so we have
res; ¢ = resy(jc) = jrespc

Thus res, ¢ = 1 < resp ¢ € kerj = H*(Gyyr, N*).

Since N/L is cyclic, by the proof of Hasse principle (i.e. (x))

reszc € ker j < invyyp(respec) =0
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This last statement here follows from
invyyp(respe) = [L: Klinvy/g e = [L': K|invy ge=0

Therefore H*(Grx,Cr/) € H*(Gr i, CL). To obtain the equality, we just compare the
orders of these groups. The exact sequence (xx) is

1— H2(GL//K,L,X) — HQ(GL’/KaIL’) — H2(GL’/K70L’) — 1
We have already seen

H2<GL’/K7 [L/)

H2(Grx, ') =[L':K|]=[L:K].

H2(G e, Co)| = ]

On the other hand, |H*(G,k,CL)| | [L : K] by Theorem [19.6
Hence Hz(GL/K7OL) = H2(GL’/K7OL’)‘

Note that in the above proof, for a cyclic extension L'/K, we have a commutative
diagram

L (G, 1) ——= HX(G i, Tnr) —= H(Gpopie, Cpy) — 1

>
: i~
ll’lVL//K //
0 L - v

e ?/Z

by Theorem [20.1]
Theorem 20.4 The invariant maps

invyg : H2(GQ/K,C’Q) - Q/Z
and

1
vy : H2<GL/Ka Cr) — WZ/Z

are isomorphisms.

We denote by uyx € H*(Gp/k,Cy) the fundamental class of L/K, which is (uniquely)
determined by invy k(U k) = ﬁ + Z.

Now the Tate-Nakayama Theorem implies

Theorem 20.5 The cup product with uy,/x induces an isomorphism

ulU
H' G, Z) =5 H™*(Gp i, CL) .

In particular, for ¢ = —2, we have
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Theorem 20.6 (Artin reciprocity law)

UUL/K

H_Q(GL/Ka Z7) —= H0<GL/Ka Cr)

Gl

YL/ Kk=TYLg /K
¥k /NaCy,

Theorem 20.7 (Existence theorem) The norm groups of Ck are precisely the open
subgroups of finite index, i.e., there is a bijection:

(H C Cxopen of finite index)( % (finite abelian extension of K)
NL/KCL —~ L
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