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1 Infinite Galois theory

An algebraic field extension L/K is called Galois, if it is normal and separable. For
this, L/K does not need to have finite degree. For example, for a finite field Fp with p
elements (p a prime number), the algebraic closure Fp is Galois over Fp, and has infinite
degree. We define in this general situation

Definition 1.1 Let L/K be a Galois extension. Then the Galois group of L over K
is defined as Gal(L/K) := AutK(L) = {σ : L → L | σ field automorphisms, σ(x) =
x for all x ∈ K}.

But the main theorem of Galois theory (correspondence between all subgroups of
Gal(L/K) and all intermediate fields of L/K) only holds for finite extensions! To
obtain the correct answer, one needs a topology on Gal(L/K):

Definition 1.2 Let L/K be a Galois extension. TheKrull topology on G = Gal(L/K)
is defined by the fact that for every element σ ∈ G the cosets

σ ·Gal(L/K ′) , K ′/K finite,

form a basis of neighborhoods of σ.

This gives in fact a topology: By standard definitions of topology we have to show: Let
σGal(L/K ′) and τ Gal(L/K ′′) be as given above, and let ρ ∈ σGal(L/K ′)∩τ Gal(L/K ′′).
Then there is a finite extension K ′′′/K with

ρGal(L/K ′′′) ⊆ σGal(L/K ′) ∩ τ Gal(L/K ′′) .

But this holds for K ′′′ = K ′ · K ′′ (the compositum), since we have Gal(L/K ′′′) =
Gal(L/K ′)∩Gal(L/K ′′) and since ρ ∈ σGal(L/K ′), we have ρGal(L/K ′′′) ⊆ σGal(L/K ′),
similarly we have ρGal(L/K ′′′) ⊆ τ Gal(L/K ′′).

Lemma 1.3 With this topology, G = Gal(L/K) is a topological group, i.e., the
multiplication

µ : G×G→ G , (σ, τ) 7→ στ

and forming the inverse
ι : G→ G, σ 7→ σ−1

are continuous maps.

Proof Left to the reader.

Theorem 1.4 Endowed with the Krull topology, G = Gal(L/K) is compact and totally
disconnected (i.e., for every σ ∈ G, the connected component of σ is equal to {σ}).

For the proof we note:
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Remarks 1.5 (a) Let H be a topological group (see 1.3). Then, for every τ ∈ H the
left translation by τ

Lτ : H → H , σ 7→ τσ

is a homeomorphism, and the same holds for the right translation by τ Rτ : σ 7→ στ). In
fact, Lτ = µ(τ,−) is continuous, with continuous inverse Lτ−1 . Therefore τ establishes
bijections

U1 = { neighborhoods of 1 } → U2 = { neighborhood of τ}
C(1) → C(τ)

where C(σ) denotes the connected component of an element σ.

(b) If L/K is finite, then the Krull topology on Gal(L/K) is the discrete topology (since
{σ} is open for every σ ∈ Gal(L/K), therefore for every subset).

Lemma 1.6 The map

h : Gal(L/K) → ∏ Gal(K ′/K)
K′/Kfinite, normal

K′⊆L

σ 7→ (σ|K′)

is injective with closed image

G̃ := {(σK′) ∈
∏Gal(K ′/K) | for K ′ ⊆ K ′′ we have σK′′ |K′ = σK′} .

Definition 1.7 We call a family (σK′) in Gal(L/K) compatible, if it lies in G̃.

The map
G

h→ G̃

is a homeomorphism. (Here ∏ Gal(K ′/K) carries the product topology with respect
to the discrete topologies on the finite groups Gal(K ′/K)), and G̃ carries the subgroup
topology in this group).

Recollection 1.8 Let (Xi)i∈I be a family of topological spaces. The product topology
on

X = ∏
i∈I
Xi

is the topology, for which the sets
U = ∏

i∈I
Ui

with Ui ⊆ Xi open for all i and Ui = Xi for almost i form a basis (i.e., the open sets are
unions of these sets). A subbasis is given by the sets∏

i∈I
i 6=j

Xi × Uj
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for j ∈ I and Uj ⊆ Xj open (i.e., finite intersections of these sets form a basis of the
topology).

This product topology is the coarsest topology, for which all projections

pi : X → Xi

are continuous. If Y is a topological space, then a map f : Y → ∏
i∈I
Xi is continuous if

and only if all component maps fi = pi ◦ f : Y → Xi are continuous. This gives the
universal property

Abbcont(Y,
∏
i∈I
Xi) ∼→

∏
i∈I

Abbcont(Y,Xi) ,

where Abbcont(Y,X) denotes the set of continuous maps f : Y → X.

Proof of Lemma 1.6: Let (Li)i∈I be the family of the intermediate fields Li of L/K
with Li/K finite and Galois. Hence we consider the map

h : G := Gal(L/K)→ ∏
i∈I

Gal(Li/K) =: H

(a) h is injective: If σ|Li = id for all i ∈ I, then we have σ|K′ = id for all subfields K ′
of L/K which are finitely over K (consider the smallest normal field N(K ′) ⊃ K ′ ⊃ K,
which is one of the fields of Li). Thus we have σ = id.

(b) h(G) = G̃ : The inclusion h(G) ⊆ G̃ is obvious. On the other hand, if (σLi) is a
compatible family, then we can define σ ∈ Gal(L/K) by setting σ(x) = σLi(x) for x ∈ Li
(note that ⋃

i∈I
Li = L, see above).

(c) To show that G̃ is closed, we show that the complement of G̃ is open. Let (σi) ∈∏
i∈I

Gal(Li/K), (σi) /∈ G̃, hence not compatible. Therefore there are j, k ∈ I with Lj ⊆ Lk,
but σk|Lj 6= σj. Then the set

{(τi) ∈
∏
i∈I

Gal(Li/K) | τj = σj, τk = σk}

is an open neighborhood of (σi), which lies in the complement of G̃.

(d) h is continuous: The sets

U = Uj,σj = ∏
i 6=j

Gal(Li/K)× {σj} ,

for j ∈ I and σj ∈ Gal(Li/K) form a subbasis of the product topology. If σj has no inverse
image in Gal(L/K), then h−1(U) is empty, therefore open (later we will see that this
case does not occur). If σ is a preimage of σj in Gal(L/K), then h−1(U) = σ ·Gal(L/Lj)
is open.
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(e) h maps open onto the image: h(σ Gal(L/Lj)) = h(G) ∩ Uj,σj is open for σj = σ|Lj .
Therefore h is a homeomorphism and we proved Lemma 1.6.

From this now follows the first claim in Theorem 1.4, since ∏
i∈I

Gal(Li/K) is compact

by Tychonov’s Theorem (see i.e. Lang ‘Real Analysis’ II §3 Theorem 3), and G̃ is
closed in this. For the second claim it suffices to show that H = ∏

i∈I
Gal(Li/K) is totally

disconnected.

For this we show that Z(1), the connected component of 1 in H, is equal to {1}
(from this and 1.5 it follows that Z(σ) = σ for all σ ∈ G). Obviously, Z(1) lies in
every set M which contains the unit and is simultaneously open and closed (from
Z(1) = (Z(1) ∩ M) ∪· (Z(1) ∩ CM) it follows that Z(1) ∩ CM = ∅, since Z(1) is
connected and Z(1) ∩M 6= ∅). Hence Z(1) lies in the intersection of all subgroups
Uj,1 = ∏

i 6=j
Gal(Li/K)× {1}. But this intersection is {1}.

Now we obtain

Theorem 1.9 (Main theorem of Galois theory for infinite extensions)

(a) Let L/K be a Galois extension with Galois group G = Gal(L/K). Then the
assignment

Ψ : K ′ 7→ Gal(L/K ′)

is a bijective, inclusion-inversing bijection between den intermediate fields of L/K and
the closed subgroups of G. The inverse map is

Φ : U 7→ LU

where LU = {x ∈ L | ux = x for all u ∈ U} is the fixed field of U in L.

(b) The open subgroups of G correspond to the intermediate fields K ⊆ K ′ ⊆ L, for
which K ′/K is finite.

(c) For an intermediate field K ⊆ K ′ ⊆ L, K ′/K is normal if and only if Gal(L/K ′)
is a normal subgroup in Gal(L/K). In this case one has a canonical isomorphism of
topological groups

Gal(L/K)/Gal(L/K ′) ∼→ Gal(K ′/K) .

We need

Lemma 1.10 If a subgroup U of a topological group H is open, then it is also closed.
If U is closed and of finite index, then U is also open.

Proof 1) For every h ∈ H the coset hU is again open (1.5). Thus

H r U = ⋃
h/∈U

hU
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is open.

2) If σ1, . . . , σn is a system of representatives for H/U , with σ1 ∈ U , then HrU =
n⋃
i=2
· σiU

is closed. �

Lemma 1.11 If L/K is Galois and K ′ is an intermediate field which is again Galois
over K is, then the homomorphism

Gal(L/K) → Gal(K ′/K)
σ 7→ σ|K ′

is surjective.

Proof Let Ω be an algebraic closure of L and let σ ∈ Gal(K ′/K). TheK-homomorphism

ϕ : K ′ σ→ K ′ ↪→ L ↪→ Ω

can be extended to an isomorphism ψ : Ω→ Ω by standard results of Algebra (see, e.g.,
my course Algebra I, Lemma 16.9), where we embed K ′ via K ′ ↪→ L ↪→ Ω. Therefore we
obtain a commutative diagram

Ω ψ

∼
// Ω

L L

K ′
σ // K ′

K

.

Since L/K is normal, we have ψ(L) ⊆ L (If α ∈ L and p is the minimal polynomial
of α over K, then ψ(α) is again a root of p, therefore in L). By considering ψ−1 we
see that σ = ψ|L : L→ L is an isomorphism, therefore we have σ ∈ Gal(L/K), and by
construction we have σ|K ′ = σ.

Proof of Theorem 1.9:

(a): Well-definedness of the correspondence: If K ′/K is a finite sub-extension of L/K,
then Gal(L/K ′) is open by definition, and, by 1.9, also closed. If K ′/K is an arbitrary
sub-extension, then we have

Gal(L/K ′) = ⋂
ν

Gal(L/Kν) ,

where Kν/K runs through the finite sub-extensions of K/K ′ (every α ∈ K is contained
in the finite sub-extension K(α)/K). Therefore, Gal(L/K ′) is closed.
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Furthermore it is obvious that for intermediate fields K ′ ⊆ K ′′ of L/K we have the
inclusion Gal(L/K ′′) ⊆ Gal(L/K ′), and that for closed subgroups U ≤ V of Gal(L/K)
we have the inclusion LV ⊆ LU .

(b): Bijectivity of the correspondence:

1) Let K ′ be an intermediate field, then we have LGal(L/K′) = K ′, therefore ΦΨ = id:

The inclusion “⊇”is obvious. Assume there is an α ∈ LGal(L/K′) with α /∈ K ′. Then
there is a finite Galois extension N/K ′ in L/K ′ with α ∈ N , and a σ ∈ Gal(N/K ′)
with σα 6= α (hence NGal(N/K′) = K ′ by classical Galois theory). But by 1.10 there
is a σ ∈ Gal(L/K ′) with σ|N = σ, therefore σα 6= α. Contradiction to the fact that
α ∈ LGal(L/K′)!

2) If H ≤ Gal(L/K) is a closed subgroup, then we have Gal(L/LH) = H therefore
ΨΦ = id: We show more generally:

Lemma 1.12 If H ≤ Gal(L/K) is an arbitrary subgroup and if H is its closure, then
we have H = Gal(L/LH).

Proof Let again (Li)i∈I be the family of the intermediate fields of L/K with Li/K finite
Galois. Let fi : Gal(L/K)→ Gal(Li/K) be the restriction map and Hi = fi(H). Since
L = ⋃

i∈I
Li, σ ∈ Gal(L/K) lies in Gal(L/LH) if and only if σ|Li for all i ∈ I operates

trivially on LHi = LHii . By finite Galois theory this holds if and only if σ|Li ∈ Hi, since
Gal(Li/LHii ) = Hi.

Therefore we have σ ∈ Gal(L/LH)

⇔ for all i ∈ I if we have fi(σ) ∈ Hi

⇔ for all i ∈ I there is a τi ∈ H with fi(τi) = fi(σ)

⇔ for all i ∈ I there is a τi ∈ H with τi ∈ f−1
i (fi(σ)) = σ Gal(L/Li)

⇔ for all i ∈ I, σ Gal(L/Li) ∩H 6= ∅

⇔ σ ∈ H,

since the sets σ Gal(L/Li) form a basis of neighborhoods for σ (ifK ′/K is an intermediate
field of L/K and N(K ′)/K is the normal closure, then we have Gal(L/N(K ′)) ⊆
Gal(L/K ′)).

b) We show that the open subgroups U ≤ Gal(L/K) correspond to the finite intermediate
extensions:

If K ′/K is a finite extension, K ′ ⊂ L, then, by definition the Krull topology Gal(L/K ′)
is open. If conversely U ≤ Gal(L/K) is an open subgroup, then there is an intermediate
field K ⊆ K ′ ⊂ L with K ′/K finite, so that Gal(L/K ′) ⊆ U . This follows since

K ⊆ LU ⊆ LGal(L/K′) = K ′
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and from the finiteness of LU/K.

c) If K ′/K is an intermediate field of L/K and σ ∈ Gal(L/K), then obviously we have

Gal(L/σ(K ′)) = σ Gal(L/K)σ−1 .

If K ′/K is normal, then we have σ(K ′) = K ′, therefore Gal(L/σ(K ′)) = Gal(L/K ′) for
all σ, therefore this is a normal subgroup. Conversely, if Gal(L/K ′) is a normal subgroup,
the Galois correspondence implies that σ(K ′) = K ′ for all σ ∈ Gal(L/K). From this
follows that K ′/K is normal: If α ∈ K ′ and α̃ is a conjugate of α in an algebraic closure
L of L, i.e., another zero of the minimal polynomial of α over K, then, by Algebra I,
Theorem 16.15, there is a K-embedding ψ : L→ L with ψ(α) = α̃. Since L/K is Galois,
we have ψ(L) ⊆ L and σ = ψ|L ∈ Gal(L/K). Since σ(K ′) = K ′ we have α̃ ∈ K!

By 1.11 we further have that

Gal(L/K)→ Gal(K ′/K)

is surjective with kernel Gal(L/K ′). Hence the homomorphism theorem gives the
isomorphism

Gal(L/K)/Gal(L/K ′) ∼→ Gal(K ′/K) .

Now we have to consider the topology. On the right hand side, we take the Krull topology.
On the left hand side, we consider the quotient topology (with respect to the Krull
topology on Gal(L/K) and the surjection π : Gal(L/K)→ Gal(L/K)/Gal(L/K ′)).

Quite generally, if f : X → Y is a map, where X is a topological space, then there is a
finest topology on Y , for which f is continuous: Define

V ⊆ Y open :⇔ f−1(V ) ⊆ X open .

This topology is called the final topology with respect to f . If f is surjective, then this
is called the quotient topology.

It now follows that, with these topologies, the above group homomorphism is a homeo-
morphism.

Exercise!
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2 Projective and inductive limits

To describe Galois groups in a conceptual way, we introduce projective limits, which are
also important in other fields of mathematics. The dual term (in the sense of category
theory) is that of inductive limits.

Definition 2.1 A (partially) ordered set (I,≤) is called filtered (or directed, or induc-
tively ordered), if the following holds:

For two elements i, j ∈ I there is a k ∈ I with i ≤ k and j ≤ k.

Examples 2.2 (a) Every totally ordered set is filtered, for example (N,≤).

(b) The power set P(M) of a set M is filtered with respect to the inclusion ⊆.

(c) Let L/K be a field extension. The set of all intermediate fields K ′ is filtered with
respect to the inclusion.

(d) The same holds for all finite partial extensions K ′/K, and as well for all finite normal
partial extensions K ′′/K.

(e) N with the partial order | is filtered.

Definition 2.3 Let be I a filtered ordered set. An inductive (respectively, projective)
system of sets over I is a family

((Xi)i∈I , (αij)i≤j) (resp. ((Xi)i∈I , (βji)i≤j))

of sets Xi (for i ∈ I) and maps

αij : Xi → Xj (for i ≤ j in I)
(resp. βji : Xj → Xi (for i ≤ j in I))

so that we have
αjk ◦ αij = αik for i ≤ j ≤ k

(resp. βji ◦ βkj = βki for i ≤ j ≤ k) .
The maps αij (βji, resp.) are called the transition maps of the system.

Therefore one obtains the term of the projective system from an inductive system by
“reversing of the arrows”. One has also projective and inductive systems of groups (the
Xi are groups and the transition maps are homomorphisms) or rings (...) or topological
spaces (....).

Examples 2.4 (a) Let R be a ring and let a ⊆ R be an ideal. Then one obtains a
projective system of rings over (N,≤) by

n p R/an

m ≤ n p R/an → R/am .
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In particular, one has the projective system

(Z/pnZ)n∈N

with transition maps

. . .→ Z/pn+1Z→ Z/pnZ→ . . .→ Z/p2Z→ Z/pZ .

(b) One obtains a projective system of abelian groups over (N, |) by

n 7→ Z/nZ
m | n 7→ Z/nZ � Z/mZ .

(c) One obtains an inductive system over (N, |) by

n 7→ Z/nZ
m | n 7→ Z/m → Z/nZ

a 7→ n
m
· a .

(d) Let L/K be a Galois extension. Then the set K = KL/K of the finite Galois field
extensions K ′/K is inductively ordered (2.2 (d)), and we obtain a projective system of
finite groups over K by

K ′ p Gal(K ′/K)
K ′ ⊆ K ′′ 7→ Gal(K ′′/K) � Gal(K ′/K) .

Definition 2.5 (a) The projective limit X = lim←−
i∈I

Xi of a projective system (Xi, βji) of

sets is defined as the set

lim←−
i∈I

Xi := {(xi) ∈
∏
i∈I
Xi | βji(xj) = xi for all i ≤ j}

of the compatible families in the product ∏
i∈I
Xi.

(b) The inductive limit lim−→
i∈I

Xi of an inductive system (Xi, αij) of sets is defined as the

quotient
lim−→
i∈I

Xi := ∐
i∈I
Xi/ ∼

of the disjoint union ∐
i∈I
Xi of the sets Xi by the following equivalence relation ∼: for

xi ∈ Xi and xj ∈ Xj we have

xi ∼ xj :⇔ ∃ k ∈ I, i, j ≤ k with αik(xi) = αjk(xj) in Xk .

If the Xi have additional structures, then this usually carries over to the limits. E.g., if
one has i.e. a projective (resp. inductive) system of groups, then the projective (resp.
inductive) limit is again a group. This also holds for rings etc.
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Examples 2.6 (compare 2.4) (a) Let R be a ring and let a be an ideal. Then

R̂ := lim←−
n

R/an

is called the a-adic completion of R and is a ring. The elements of R̂ are compatible
families (an)n∈N with an ∈ R/an.

Compatibility means that for representatives an of an we have:

an+1 ≡ an mod an .

One has a ring homomorphism

ϕ : R → R̂
a 7→ (a)n∈N ,

which is in general neither injective nor surjective. Obviously we have

kerϕ = ⋂
n≥1

an .

For example, let R = Z and let a = (p) be the principal ideal generated by a prime
number p. Then

Zp = lim←−
n

Z/pnZ

is called the p-adic completion of Z. The map ϕ : Z → Zp is injective, since we
obviously have ⋂

n≥1
(pn) = 0. Every element α ∈ Z/pnZ will be represented by a uniquely

determined element α ∈ Z with 0 ≤ α < pn, and this can again be written in a unique
way by

α =
n−1∑
i=0

qi p
i

with numbers 0 ≤ qi ≤ p − 1 (p-adic expansion). Thus, every element α ∈ Zp can be
written in a unique way as a formal series

(∗) α =
∞∑
i=0

ai p
i (ai ∈ Z, 0 ≤ ai ≤ p− 1)

If we set
αn =

n−1∑
i=0

ai p
i ∈ Z (n ≥ 1) ,

then (∗) means the compatible family

(αn mod (pn))n≥1 .

This shows that there are uncountably many elements in Zp (the set of the families
(ai)i≥0 with ai ∈ {0, . . . , p− 1} is uncountable). In particular, Z ↪→ Zp is not surjective.
Zp is also called the ring of the (integral) p-adic numbers.
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(b) Define Ẑ = lim←−
n

Z/nZ. Here, the projective limit is over (N, |), indexed as in 2.4 (b).

If n ∈ N and
n = pn1

1 . . . pnrr

is the the prime factor decomposition, then one has a canonical decomposition

(2.6.1) Z/nZ ∼→ Z/pm1
1 Z× . . .× Z/pmrr Z

(Chinese residue theorem). This is compatible with the transition maps: For m | n we
have

m = pm1
1 . . . pmrr

with mi ≤ ni (i = 1, . . . , r), and the diagram

(2.6.2) Z/nZ ∼ //

��

Z/pm1
1 Z

��

× × Z/pnrr Z

��
Z/mZ ∼ // Z/pm1Z × × Z/pmrr Z

is commutative. This gives a canonical ring isomorphism

Ẑ ∼→ ∏
p
Zp ,

where the product on the right hand side runs over all prime numbers. (For this it is
best to write formally n = ∏

p
pnp , where the product runs over all prime numbers and

np = 0 for nearly all p, and to write the right hand side of (2.6.1) as∏
p
Z/pnpZ ,

correspondingly for (2.6.2)).

(c) For the inductive system (Z/nZ)n∈N of 2.4 (c) one obtains an isomorphism of abelian
groups

lim−→
n

Z/nZ ∼→ Q/Z ,

which maps a+ nZ ∈ Z/nZ to the residue class of a
n

mod Z: For every fixed n ∈ N, the
map

Z/nZ ↪→ Q/Z
a+ nZ 7→ a

n
+ Z

is a well-defined, injective group homomorphism. This is compatible with the transition
maps: For m | n the diagram

a+mZ_

��

% ,,Z/mZ� _

��

##

a
m

+ Z

Q/Z

n
m
a+ nZ � 22Z/nZ

;;

na
mn

+ Z
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is commutative. This implies the claim – exercise!

The group Q/Z is also called the “Prüfer group”. This is also isomorphic to the group
µ(C) of all unit roots in C×, via the map

Q/Z ∼→ µ(C)
p
q

+ Z 7→ e2πi p
q .

(d) If L/K is a Galois extension, then, by Lemma 1.6

(2.6.3) Gal(L/K) ∼→ lim←−
K′∈KL/K

Gal(K ′/K)

where KL/K is the directed set of the finite normal sub-extensions K ′/K of L/K.

(e) If (Xi)i∈I is a projective system of topological spaces, then

lim←−
i∈I

Xi ⊆
∏
i∈I
Xi

is equipped with the subspace topology, with respect to the product topology on the
product on the right hand side.

(f) If one applies this on the examples (a), (b) and (d), with respect to the discrete
topologies on R/an, Z/nZ resp., Gal(K ′/K) resp., then one obtains topologies on
R̂ = lim←−R/a

n, Zp, Ẑ and lim←−Gal(K ′/K).

Furthermore one can easily see that, by this, one obtains topological groups, and for
R̂, Zp and Ẑ one even obtains topological rings (the multiplication is again continuous).
From Lemma 1.6 we get that the isomorphism (2.6.3) is also a homeomorphism, therefore
an isomorphism of topological groups.

Now we can describe the absolute Galois group

GFq = Gal(Fq/Fq)

of a finite field Fq with q elements.

Theorem 2.7 There is a canonical isomorphism of topological groups

Ẑ ∼→ GFq .

Proof For every natural number n there is exactly one extension of degree n over Fq, to
wit: Fqn . This is Galois, and there is a canonical isomorphism

Z/nZ ∼→ Gal(Fqn/Fq)
1 mod nZ 7→ Frq ,
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where Frq is the Frobenius automorphism, given by

Frq(x) = xq (for all x ∈ Fqn) .

This is compatible with the transition maps: One has Fqm ⊆ Fqn if and only if m | n,
and then the diagram

1_

��

Z/nZ

����

∼ // Gal(Fqn/Fq)

��

Frq_

��
1 Z/mZ ∼ // Gal(Fqm/Fq) Frq

is commutative. The projective system (Gal(K ′/Fq))K′∈KFq/Fq
therefore can be identi-

fied with the projective system (Z/nZ)n∈(N,|) from 2.4 (b); accordingly one obtains an
isomorphism

Ẑ = lim←−
n

Z/nZ→ lim←−
n

Gal(Fqn/Fq) = lim←−
K′

Gal(K ′/Fq)

of the projective limits, which maps a compatible family (an)n on the left hand side to
the compatible family (FranFqn/Fq)n on the right hand side. The claim of the theorem now
follows with 20.6 (d), (e) and (f).

Remark 2.8 We have the map

Z → Ẑ ∼→ Gal(Fq,Fq),
1 7→ 1 7→ Frq

where Frq is the Frobenius automorphism of Fq: Frq(x) = xq. The first homomorphism
is injective, but not surjective, since not even one of the compositions

Z→ Ẑ = ∏
p
Zp → Zp

is surjective (20.6(a)). But we have that Z is dense in Ẑ (and thus dense in Gal(Fq/Fq))
(Proof: left to the reader).
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3 Cohomology of groups and pro-finite groups

The following definition is formulated in a parallel way for the case that topologies on
G and A are given, and one considers continuous maps, or that there is no topology
(equivalent: the topology is discrete, so that all maps are continuous).

Definition 3.1 Let G be a (topological) group and let A be a (continuous) G-module,
i.e., an abelian group A together with a (continuous) composition

µ : G× A → A
(σ, a) 7→ σa

for which we have
σ(a+ b) = σa+ σb
σ1(σ2a) = (σ1σ2)a

1a = a

for all a, b ∈ A, σ, σ1, σ2 ∈ G and the unit element 1 ∈ G. For n ∈ N0 define the group of
the continuous n-cochains on G with coefficients in A by

Xn = Xn(G,A) = {continuous maps x : Gn+1 → A}.

Xn is in a natural way a continuous G-module by

(σx)(σ0, ..., σn) = σx(σ−1σ0, σ
−1σ1, ..., σ

−1σn).

The maps
di : Xn+1 −→ Xn

given by
dix(σ0, σ1, ..., σn) = x(σ0, ..., σ̂i, .., σn),

(where σ̂i indicates that we have omitted σi from the (n+ 1)-tuple (σ0, ..., σn)) induce
G-homomorphisms d∗i : Xn−1 −→ Xn, and we form the alternating sum

∂n =
n∑
i=0

(−1)id∗i : Xn−1 −→ Xn.

We often just write ∂ instead of ∂n. Hence, for x ∈ Xn−1, ∂x is the function

(∂x)(σ0, ..., σn) =
n∑
i=0

(−1)ix(σ0, ..., σ̂i, ..., σn).

Moreover, we have a G-module homomorphism δ0 : A −→ X, which associates to a ∈ A
the constant function x(σ0) = a,

Proposition 3.2 The sequence

0 −→ A
∂0
−→X0 ∂1

−→X1 ∂2
−→X2 −→ . . .

is exact, i.e., one has im ∂n = ker ∂n+1 at all places.
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Proof We first show that the sequence is a complex, i.e., that ∂∂ = 0. It is clear that
∂1 ◦ ∂0 = 0. Now let x ∈ Xn−1. Applying ∂ to 3.1, we get summands of the form
x(σ0, ..., σ̂j, ..., σn) with certain signs. Each of these summands arise twice, once where
first σj and then σi is omitted, and again where first σi and then σj is omitted. The
first time the sign is (−1)i(−1)j, and the second time it is (−1)i(−1)j−1. Hence the
summands add up to zero.

For the exactness, we consider the map D−1 : X0 → A,D−1x = x(1), and for n ≥ 0 the
maps

Dn : Xn+1 −→ Xn, (Dnx)(σ0, . . . , σn) = x(1, σ0, . . . , σn).
These are homomorphisms of Z-modules, and not of G-modules. An easy calculation
shows that for n ≥ 0 we have

(3.2.1) Dn ◦ ∂n+1 + ∂n ◦Dn−1 = id.

If x ∈ ker(∂n+1), then x = ∂nDn−1x, i.e., im(∂n) ⊆ ker(∂n+1) and thus ker(∂n+1) =
im(∂n), because ∂n+1 ◦ ∂n = 0.

An exact sequence of G-modules 0→ A→ X0 → X1 → X2 → . . . is called a resolution
of A, and a family (Dn)n≥−1 as above with the property 3.2.1 is called a contracting
homotopy. The above resolution is called the standard resolution of A (by G-
modules).

Now we apply the functor of taking the fixed modules under G. For any G-module A
this is the module

AG := {a ∈ A | ga = a for all g ∈ G}.

Therefore we define, for n ≥ 0,

Definition 3.3 Let
Cn(G,A) = Xn(G,A)G.

Cn(G,A) consists of the continuous functions x : Gn+1 → A such that

x(σσ0, . . . , σσn) = σx(σ0, . . . , σn)

for all σ ∈ G. These functions are called the homogeneous n-cochains of G with
coefficients in A. From the standard resolution 3.2.1 we obtain a sequence

C0(G,A) ∂1
−→C1(G,A) ∂2

−→C2(G,A) −→ . . . ,

which is no longer exact. But it is still a complex, i.e., we have ∂∂ = 0, and this complex
is called the homogeneous cochain complex of G with coefficients in A. We set

Zn(G,A) = ker(Cn(G,A) ∂
n+1
−→Cn+1(G,A)), Bn(G,A) = im(Cn−1 ∂n−→Cn(G,A))

and define
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Definition 3.4 For n ≥ 0 the cohomology groups of the complex C•(G,A),

Hn(G,A) = Zn(G,A)/Bn(G,A)

are called the n-th cohomology groups of G with coefficients in A.

For computational purposes, and for many applications, it is useful to pass to a modified
definition of the cohomology groups, which reduces the number of variables in the
homogeneous cochains x(σ0, . . . , σn) by one. Let C0(G,A) = A and Cn(G,A), for n ≥ 1,
be the abelian group of all continuous functions y : Gn −→ A. Then we have the
isomorphism

C0(G,A) −→ C0(G,A), x(σ) 7→ x(1),

and for n ≥ 1 the isomorphisms

Cn(G,A) −→ Cn(G,A), x(σ0, . . . , σn) 7→ y(σ1, . . . , σn) = x(1, σ1, σ1σ2, . . . , σ1 . . . σn),

whose inverse is given by

y(σ1, . . . , σn) 7→ x(σ0, . . . , σn) = σ0y(σ−1
0 σ1, σ

−1
1 σ2, . . . , σ

−1
n−1σn).

With these isomorphisms the coboundary operators ∂n+1 : Cn(G,A) −→ Cn+1(G,A) are
transformed into the homomorphisms ∂n+1 : Cn(G,A) −→ Cn+1(G,A) given by

∂1(a)(σ) = σa− a, for a ∈ A = C0

∂2(f)(σ1, σ2) = σ1f(σ2)− f(σ1σ2) + f(σ1),
∂n+1(f)(σ1, . . . , σn+1) = σ1f(σ2, . . . , σn)

+
n∑
i=1

(−1)if(σ1, . . . , σi−1, σiσi+1, σi+2, . . . , σn+1)
+(−1)n+1f(σ1, . . . , σn) for n ≥ 1

Setting
Zn(G,A) = ker(Cn(G,A) ∂

n+1
−→Cn+1(G,A)),

Bn(G,A) = im(Cn−1(G,A) ∂n−→Cn(G,A)),

the isomorphisms Cn(G,A)→ Cn(G,A) induce isomorphisms

Hn(G,A) ∼= Zn(G,A)/Bn(G,A).

The functions in Cn(G,A), Zn(G,A) and Bn(G,A) are called the inhomogeneous n −
cochains, n− cocycles, and n− coboundaries, respectively.

We now consider the cohomology groups in small dimensions, n = 0, 1, 2.

H0(G,A) :

17



Lemma 3.5 There is a canonical isomorphism

H0(G,A) ∼= AG,

where AG = {a ∈ A | σa = a for all σ ∈ G} denotes the fixed module of A under G.

Proof We have H0(G,A) = ker ∂0, and ∂0 is the map

A
∂0
−→ C1(G,A)

a 7→ f : G→ A with f(σ) = σa− a.

Therefore we have ker ∂0 = AG.

H1(G,A) :

Z1(G,A) is the group of the (continuous) maps f : G→ A with

f(στ) = f(σ) + σf(τ).

These are also called crossed homomorphisms. The group B1(G,A) of the 1 −
coboundaries is the group of maps f : G→ A of the form

f(σ) = σa− a

for a fixed a ∈ A. We immediately see:

Lemma 3.6 If G operates trivially on A (i.e., if σa = a for all σ ∈ G, a ∈ A), then

H1(G,A) = Hom(G,A) , (respectively, Homcont(G,A))

is the group of homomorphisms from G to A (respectively, the continuous homomorphisms,
if we have topologies on the group).

H2(G,A) :

Z2(G,A) is the group of (continuous) maps f : G×G→ A with

f(στ, ρ) + f(σ, τ) = f(σ, τρ) + σf(τ, ρ).

These are also called factor systems. The 2-coboundaries are the functions of the
form

f(σ, τ) = g(σ)− g(στ) + σg(τ)

for an arbitrary (continuous) map g : G→ A.

The factor systems are related to group extensions. We only describe this for groups
without topology.
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Definition 3.7 Let G and A be groups (not necessarily commutative). A group
extension of G by A is an exact sequence

1→ A
ι→E

π→G→ 1,

i.e., ι and π are group homomorphisms, ι is injective, π is surjective, and we have
im ι = kerπ. In other words, E is a group which contains A as a normal subgroup, such
that we have an isomorphism E/A

∼→G.

Lemma 3.8 Assume that A is abelian. Then A becomes a G-module by defining, for
a ∈ A and g ∈ G

g(a) = ĝa(̂g)−1,

where ĝ ∈ E is a lift of g, i.e., a preimage of g under π : E � G.

Proof Since A is a normal subgroup, we have g(a) ∈ A, and since A is commutative,
g(a) is independent of the choice of ĝ. In fact, if g̃ is another lift of g, then we have
g̃ = g̃b for a b ∈ A (since g̃−1 ∈ kerπ = A), and therefore we have

g̃ag̃−1 = ĝbab−1ĝ−1 = ĝaĝ−1,

since A is commutative.

A is a G-module: Obviously we have 1 · a = a. Moreover for a, a′ ∈ A we have

g(a · a′) = ĝaa′ĝ−1 = ĝaĝ−1ĝa′ĝ−1 = g(a) · g(a′)

i.e., the operation of G is compatible with the group law of A (which is written multi-
plicatively here).

Definition 3.9 If
1 // A

ι // E

g
��

π // G // 1

1 // A ι′ // E ′ π′ // G // 1
is a commutative diagram, then the two extensions are called equivalent.

Now we attach a factor system to each group extension.

Let
s : G→ E

be a section of π : E → G, i.e., a map with πs = idG (This always exists, by the axiom
of choice – obvious for finite groups). For σ, τ ∈ G, the elements s(σ) · s(τ) and s(στ)
are both mapped to στ by π; hence they differ by an element in kerπ = A. Hence there
is a unique f(σ, τ) ∈ A with

s(σ) · s(τ) = f(σ, τ) · s(στ) .
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Lemma 3.10 (i) The map f : (σ, τ) 7→ f(σ, τ) is a factor system, i.e., a 2-cocycle.

(ii) The associated cohomology class

[f ] ∈ H2(G,A)

is independent of the choice of a section s.

(iii) Two group extensions
1→ A

ι−→ E
π−→ G→ 1

1→ A
ι′−→ E

π′−→ G→ 1

are equivalent if and only if the associated classes [f ], [f ′] in H2(G,A) are equal.

Exercise!
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4 Basics about modules and homological Algebra

Let R be a ring with unit (not necessarily commutative).

Definition 4.1 (a) A (left) R-module is an abelian group (M,+) together with a
composition

R×M → M
(r,m) 7→ rm

so that we have
(i) r(m+ n) = rm+ rn

(ii) (r + s)m = rm+ sn

(iii) (rs)m = r(sm)
(iv) 1m = m

for all r, s ∈ R and m,n ∈M .

(b) Let M and N be R-modules. A map ϕ : M → N is called a homomorphism of
R-modules (or R-linear), if the following holds:

(i) ϕ(m1 +m2) = ϕ(m1) + ϕ(m2) for all m1,m2 ∈M (i.e., ϕ is a group homomorphism
of (M,+) to (N,+)),

(ii) ϕ(rm) = rϕ(m) for all m ∈M, r ∈ R.

Let HomR(M,N) be the abelian group of the R-linear maps from M to N .

Remarks 4.2 (a) A right R-module M is defined similarly, but the property (iii) is
replaced by

(iii’) (rs)m = s(rm) .

If one writes the composition differently, namely

M ×R → M
(m, r) 7→ mr ,

then one gets a more plausible relation

m(rs) = (mr)s .

(b) For a commutative ring, left- and right modules are the same.

(c) As usual, one calls an R-linear map ϕ : M → N a monomorphism (resp. epimorphism,
resp. isomorphism), if it is injective (resp. surjective, resp. bijective).

(d) The composition of R-linear maps is again linear. The inverse of a R-module
isomorphism is again R-linear.
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Examples 4.3 (a) Every abelian group A becomes a Z-module by the definition

na = a+ . . .+ a (n-times) for n ∈ N ,

0a = 0
(−n)a = −(na) for n ∈ N .

One can see that abelian groups and Z-modules are the same.

(b) If (Mi)i∈I is a family of R-modules, then the abelian groups∏
i∈I
Mi ⊇ ⊕

i∈I
Mi

become R-modules by the definition r(mi)i∈I := (rmi)i∈I .

The first module is called the direct product of the R-modules Mi, and the second
module is called the direct sum of the R-modules Mi.

(c) If K is a field , then a K-module is the same as a K-vectorspace.

Definition 4.4 An R-module M is called a free R-module, if there is a family (mi)i∈I
of elements mi ∈M , so that we have: Every element m ∈M has a unique representation

m = ∑
i∈I
rimi ,

where ri ∈ R and ri = 0 for almost all i ∈ I (so that the right sum is finite, if we omit
the summands with ri = 0). Such a family (mI)i∈I is called basis of M .

Examples 4.5 (a) Let I be a set. Then the R-module

FR(I) := ⊕
i∈I
R

is free with basis (ei)i∈I , where we have ei = (δji)j∈I , with the Kronecker symbol

δij =
{

1 , j = 1
0 , j 6= i

(with 0, 1 ∈ R). FR(I) is also called the free R-module over I. Sometimes one identifies
ei with i and one writes the elements as formal linear combinations∑

i∈I
rii ,

with ri ∈ R, ri = 0 for nearly all i.

(b) The Z-module M = Z/5Z is not free, since for every m ∈ Z/5Z, we have 1 ·m =
m = 6 ·m. But M is a free module over the ring Z/5Z.
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Lemma 4.6 (Universal property of the free module) Let M be an R-module and let
(mi)i∈I be a family of elementsmi ∈M . Then there is a unique R-module-homomorphism

ϕ : FR(I)→M

with ϕ(ei) = mi for all i ∈ I (Therefore we have HomR(FR(I),M) ∼→ Abb(I,M) via
ϕ 7→ (ϕ(ei))i∈I).

Proof Let ϕ((ri)) = ∑
i∈I
rimi.

Definition 4.7 M is free with basis (mi)i∈I if and only if the ϕ above is an isomorphism.

Definition 4.8 Let M be an R-module. An (R-)submodule of M is a subset N ⊆M ,
for which we have:

(i) N is subgroup with respect to +,

(ii) for all n ∈ N and r ∈ R we have rn ∈ N .

Lemma 4.9 If ϕ : M → N is a homomorphism of R-modules, then kerϕ is a submodule
of M and imϕ is a submodule of N .

Proof easy!

Theorem 4.10 If M is an R-module and N ⊆ M is a submodule, then the quotient
group

M/N

becomes an R-module by the definition

r(m+N) := rm+N for r ∈ R,m ∈M

(Hence r ·m = rm, if m denotes the coset of m ∈M). The surjection π : M →M/N is
R-linear.

Proof Left to the reader!

Remarks 4.11 The homomorphism theorem and the first and the second isomorphism
theorem hold for R-modules:

(a) An R-linear map ϕ : M → N induces an R-module-isomorphism

M/ kerϕ ∼→ imϕ .

(b) For submodules N1, N2 ⊂M one has an R-module-isomorphism

N1/(N1 ∩N2) ∼→ (N1 +N2)/N2 .
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(c) For submodules M3 ⊂M2 ⊂M1 one has an R-isomorphism

(M1/M3)/(M2/M3) ∼→M1/M2 .

Now we consider the homological Algebra of R-modules.

Definition 4.12 We define complexes of R-modules again as sequences

. . .→Mn−1 ∂n−1
→ Mn ∂n→Mn+1 ∂n+1

→ Mn+2 → . . . ,

where the Mn are R-modules and the maps ∂n are linear maps with ∂n∂n−1 = 0. The
elements in ker ∂n are called the cycles in Mn, and the elements of im ∂n−1 are called the
boundaries in Mn. Since ∂n∂n−1 = 0, we have im ∂n−1 ⊆ ker ∂n. The n-th cohomology
of the complex is the R-module

Hn(M ·) = ker ∂n/ im ∂n−1

and the complex is called exact at the place n, if Hn(M ·) = 0, and exact, if it is exact at
all places.

Definition 4.13 Let C · and D· be complexes of R-modules, where R is a ring (for
R = Z we have simply complexes of abelian groups). A morphism of complexes (of
R-modules)

ϕ : C · → D·

is a collection of homomorphisms of R-modules

ϕi : Ci → Di ,

which are compatible with den differentials, i.e., for which all squares

Ci+1

OO

ϕi+1
// Di+1

OO

Ci

∂iC

OO

ϕi // Di

∂iD

OO

OO OO

are commutative, where ∂iC and ∂iD are the differentials for C · and D·), respectively.
Therefore we have ϕi+1∂iC = ∂iDϕ

i (simplified notation, without degrees: ϕ∂C = ∂Dϕ).
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Lemma 4.14 A morphism of complexes

ϕ : C · → D·

induces homomorphisms

ϕi∗ = H i(ϕ) : H i(C)→ H i(D)

in the cohomology. For these we have (idC)i∗ = idHi(C) and (ψϕ)∗ = ψ∗ϕ∗ for another
morphism of complexes ψ : D· → E·.

Proof By the compatibility with the differentials the map

ϕi : Ci → Di

induces maps
ker ∂iC → ker ∂iD

im ∂i−1
C → im ∂i−1

B

and thus a well-defined R-linear map

ϕi∗ : H i(C ·) → H i(D·),
[a] := a mod im ∂−1

C 7→ ϕi(a) mod im ∂i−1
D =: [ϕi(a)]

(for a ∈ ker ∂iC). The other claims are obvious.

In the following, [a] denotes the cohomology class of a cycle a.

Definition 4.15 A sequence
C ·

φ→ D·
Ψ→ E·

of (morphisms of) complexes is called exact, if the sequence

Ci φi→ Di ψ
i

→ Ei

is exact for all i.

Theorem 4.16 (long exact cohomology sequence) Let R be a ring and let

0→ C ·
φ→ D·

Ψ→ E· → 0

be a short exact sequence of complexes of R-modules. Then there are canonical R-module
homomorphisms

δi : H i(E·)→ H i+1(C ·)
for all i (called connecting homomorphisms), such that the sequence

. . .→ H i−1(E·) δi−1
→ H i(C ·) φi∗→ H i(D·) ψi∗→ H i(E·) δi→ H i+1(C ·)→ . . .

is exact.

25



Proof We have a commutative diagram

(4.15.1)

0 // Ci+2

OO

φi+2
// Di+2

OO

// Ei+2 //

OO

0

0 // Ci+1

∂C (4)
OO

φi+1
// Di+1

∂D

OO

ψi+1
// Ei+1 //

OO

0

0 // Ci φi //

∂C (2)
OO

Di ψi //

∂D (3)
OO

Ei //

∂E

OO

0

0 // Ci−1 //

∂C

OO

Di−1 ψi−1
//

∂D (1)
OO

Ei−1 //

∂E

OO

0OO OO OO

where the rows are short exact sequences.

1) Exactness at H i(D·): It is obvious that ψ∗φ∗ = 0 (since ψ∗φ∗ = (ψφ)∗ = 0∗ = 0). Let
[di] ∈ H i(D·) with ψ∗[di] = 0. Then ψidi is a boundary, i.e., there is an ei−1 ∈ Ei−1 with
ψi(di) = ∂Ee

i−1. By the surjectivity of ψi−1 there is a di−1 ∈ Di−1 with ψi−1di−1 = ei−1.
Then we have

ψi(di − ∂Ddi−1) = ∂Ee
i−1 − ψi∂Ddi−1 = ∂Eψ

i−1di−1 − ψi∂Ddi−1 = 0

(commutativity of (1)). By the exactness of the i-th row there is a ci ∈ Ci with
φici = di − ∂Ddi−1. For this ci we have

φi+1∂Cc
i = ∂Dφ

ici = ∂Dd
i − ∂D∂Ddi−1 = 0

by the commutativity of (2), since ∂D∂D = 0 and since di is a cycle. Since φi+1 is injective,
we get ∂Cci = 0, i.e., ci is a cycle. Then we have

[di] = [di − ∂Ddi−1] = [φici] = φi∗[ci] ∈ imφi∗ .

2) Definition of δi: Let [ei] ∈ H i(E·), i.e., let ei ∈ Ei with ∂Eei = 0. By the surjectivity
of ψi there is a di ∈ Di with ψidi = ei. Consider

∂Dd
i ∈ Di+1 .

We have
ψi+1∂Dd

i = ∂Eψ
idi commutativity of (3))

= ∂Ee
i = 0 (assumption) .
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Hence, by the exactness of the i+ 1-th row, there is a ci+1 ∈ Ci+1 with φi+1ci+1 = ∂Dd
i.

For this element we have

φi+2∂Cc
i+1 = ∂Dφ

i+1ci+1 = ∂D∂Dd
i = 0

(commutativity of (4) and ∂D∂D = 0), and we see that ∂Cci+1 = 0, since φi+2 is injective.
Therefore ci+1 is a cycle. We set

(4.15.2) δ([ei]) = [ci+1] ∈ H i+1(C ·) .

Conclusion: The definition of δi can be visualized as:

ci+1 � φi+1
// ∂Dd

i

di

∂D

OO

� ψi // ei

Well-definedness: Let ẽi ∈ Ei be another cycle with [ẽi] = [ei], let d̃i ∈ Di with φid̃i = ẽi,
and let c̃i+1 ∈ Ci+1 with φi+1c̃i+1 = ∂Dd̃i) be chosen as above. We have to show that
[c̃i+1] = [ci+1] ∈ H i+1(C ·).

By assumption, there is an ei−1 ∈ Ei−1 with

ẽi = ei + ∂Ee
i−1 ,

and by the surjectivity of ψi−1 there is a di−1 ∈ Di−1 with ψi−1di−1 = ei−1. We calculate

ψi(d̃i − di − ∂Ddi+1) = ẽi − ei − ψi∂Ddi−1

= ẽi − ei − ∂Eψi−1di−1 (commutativity of (1))
= ẽi − ei − ∂Eei−1 = 0 .

By the exactness of the i-th row there is a ci ∈ Ci with φici = d̃i− di− ∂Ddi−1. We claim
that

(4.15.3) c̃i+1 = ci+1 + ∂Cc
i ,

which implies [c̃i+1] = [ci+1] as wished. But we have

φi+1(c̃i+1 − ci+1) = ∂Dd̃i − ∂Ddi
= ∂D(d̃i − di − ∂Ddi−1) (since ∂D∂D = 0)
= ∂Dφ

ici = φi+1∂Cc
i (commutativity of (2))

By the injectivity of φi+1, (4.15.3) follows.

Exactness at H i(E·): One can easily see that δiψi∗ = 0: If [ei] ∈ imψi∗, then we can
choose di ∈ Zi(D·) above, i.e., choose it as a cycle. Then ∂Ddi = 0, therefore ci+1 = 0,
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by Definition (4.15.2) therefore δ([ei]) = 0. Conversely, let δ([ei]) = 0, therefore (with
the notations above) [ci+1] = 0, i.e.,

ci+1 = ∂Cc
i

for an ci ∈ Ci. Then, again with the notations above, we have

∂Dd
i = φi+1ci+1 = φi+1∂Cc

i

= ∂Dφ
ici (commutativity of (2)) .

Therefore for d̃i = di−φici we have ∂Dd̃i = 0, i.e., d̃i ∈ Zi(D·) and ψid̃i = ψidi−ψiφici =
ψidi = ei (since ψiφi = 0), therefore

ψi∗[d̃i] = [ei] .

Exactness at H i+1(C ·): Exercise!

The claim follows, since i was arbitrary.

Corollary 4.17 (Snake lemma) Let

(4.16.1) 0 // A′ // B′ // C ′ // 0

0 // A //

f

OO

B //

g

OO

C

h

OO

// 0

be a commutative diagram of R-modules with exact rows. Then one has a canonical
exact sequence

(4.16.2) 0→ ker f → ker g → kerh δ→ coker f → coker g → coker h→ 0 .

Here one defines:

Definition 4.18 Let ϕ : M → N is a homomorphism of R-modules. Then

cokerϕ := N/ imϕ

is called the cokernel of ϕ.

Remark 4.19 With this definition we always have an exact sequence

0→ kerϕ i
↪→M

ϕ→ N
p→ cokerϕ→ 0

where i is the inclusion and p is the canonical projection.
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Proof of the snake lemma: We regard (4.16.1) as a short exact sequence of complexes,
where we complete with zeroes above and below:

0 // 0 // 0 // 0 // 0

0 // A′ //

OO

B′ //

OO

C ′ //

OO

0

0 // A //

f

OO

B //

g

OO

C //

h

OO

0

0 // 0 //

OO

0 //

OO

0 //

OO

0

The long exact cohomology sequence of 4.17 gives (4.16.2): The cohomology at A,B and
C is just ker f, ker g and kerh, respectively, and the cohomology at A′, B′ and C ′ is just
A′/ im f , B′/ im g and C ′/ im h. The homomorphism δ in (4.16.2) is just the connecting
homomorphism. All other cohomology groups are zero.

Remarks 4.20 (a) The following diagram with exact rows and columns gives an
explanation of the name and the definition of the maps (and – by ’diagram chase’ – also
a proof of the snake lemma)

0 0 0

δ // coker f //

OO

coker g

OO

// coker h //

OO

0

0 // A′
α′ //

OO

B′
β′ //

OO

C ′ //

OO

0

0 // A
α //

f

OO

B
β //

g

OO

C //

h

OO

0

0 // ker f //

OO

ker g //

OO

kerh

OO

0

OO

0

OO

0

OO

The sequence of the kernel below is induced by α and β, the sequence of the cokernels above
is induced by α′ and β′. The homomorphism δ is defined as follows: For c ∈ kerh ⊆ C
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let b be a lift of c in B (β(b) = c) and b′ = g(b) ∈ B′. Then “b′ already lies in A′” (if
we regard α′ as inclusion), more precisely, there is an a′ ∈ A′ with α(a′) = b′ (since
β′(b′) = h(c) = 0 and ker β′ = imα′). Then one has

δ(c) = class of a′ in coker f .

This follows from the definitions in 4.16. On the other hand, with the indicated maps,
one can easily prove the well-definedness of δ and the exactness of (4.16.2).

(b) In the literature the easy snake lemma is usually proven first, and the long exact
cohomology sequence is derived from it.

Corollary 4.21 Let
0→ A→ B → C → 0

be an exact sequence of abelian groups and let n ∈ N. Then one has an exact sequence

0→ A[n]→ B[n]→ C[n]→ A/n→ B/n→ C/n→ 0 .

Here, for an abelian group D let

D[n] := {d ∈ D | n · d = 0}

be the group of the n-torsions elements and let

D/n := D/nD ,

with nD = {nd | d ∈ D} ⊆ D.

Proof Apply the snake lemma to

0 // A // B // C // 0

0 // A //

n

OO

B //

n

OO

C //

n

OO

0 ,

where n→ denotes the n-multiplication x 7→ nx.

Corollary 4.22 (compare example 20.6 (c))

Q/Z[n] ∼= Z/nZ

Proof Apply 4.21 to the exact sequence

0→ Z→ Q→ Q/Z→ 0 ,

where Q[n] = 0 and Q/nQ = 0.
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5 Applications to group cohomology

Let G be a group or a topological group.

Definition 5.1 Let A and B be two (continuous) G-modules. A map

ϕ : A→ B

is called a (homo-)morphism of G-modules, if ϕ is a (continuous) group homomor-
phism and if we have:

ϕ(σa) = σϕ(a) for all σ ∈ G and a ∈ A .

Lemma 5.2 A homomorphism ϕ : A→ B of G-modules induces a canonical homomor-
phism of abelian groups in the group cohomology

ϕ∗ : H i(G,A)→ H i(G,B)

for all i ≥ 0. Here we have id∗ = id and (ψϕ)∗ = ψ∗ϕ∗ for another homomorphism of
G-elements ψ : B → C.

Proof ϕ induces a homomorphism

ϕi : Ci(G,A)→ Ci(G,B)

on the (continuous) i-cochains by

(f : Gi → A) 7→ (ϕ ◦ f : Gi → B) .

It follows immediately from the definitions that the ϕi are compatible with the differentials
(∂ϕi = ϕi+1∂), therefore this induces a morphism

ϕ : C ·(G,A)→ C ·(G,B)

of complexes. The claim follows by passing to the cohomology (Lemma 4.14).

Theorem 5.3 (Long exact cohomology sequence) Let

0→ A
α→ B

β→ C → 0

be an exact sequence of (continuous) G-modules, i.e., let α and β be G-module homo-
morphisms and let the sequence be exact. In case of continuous G-modules we assume

(5.3.1)
β has a continuous section as map of sets,
i.e., there is a continuous map s : C → B
(not necessarily a homomorphism) with βs = idC .

Then there is a canonical exact cohomology sequence

0 → H0(G,A) α∗→ H0(G,B) β∗→ H0(G,C) δ→ H1(G,A) → . . .

. . . → H i(G,A) α∗→ H i(G,B) β∗→ H i(G,C) δ→ H i+1(G,A) → . . . .

31



Proof We only have to show that

0→ C ·(G,A) α→ C ·(G,B) β→ C ·(G,C)→ 0

is a short exact sequence (of complexes); then the claim follows by passing to cohomology
(Theorem 4.16). Therefore we have to show that for every i the sequence

0→ Ci(G,A) αi→ Ci(G,B) βi→ Ci(G,C)→ 0

is exact. The injectivity of αi and the exactness at Ci(G,B) follows easily from the
exactness of 0→ A

α→ B
β→ C. Now, let s : C → B be a (continuous) section of β. The

existence of s follows from the axiom of choice, or from the assumption (5.3.1) (in the
continuous case), respectively. Then the map

si : Ci(G,C) → Ci(G,B)
f 7→ s ◦ f

is a set theoretical section of βi, i.e., we have βisi = id. From this follows immediately
the surjectivity of βi, therefore the exactness at Ci(G,C).

Proposition 5.4 (Change of the group) (a) Let G and G′ be (topological) groups, let
A be a (continuous) G-module and let A′ be a (continuous) G′-module. Furthermore let

π : G′ → G , ϕ : A→ A′

be (continuous) group homomorphisms with

ϕ(π(g′)(a) = g′ϕ(a)

for all a ∈ A and all g′ ∈ G′. ((π, ϕ) is then called a compatible pair). From this we
obtain canonical homomorphisms

(π, ϕ)∗ : Hn(G,A)→ Hn(G′, A′)

for all n ≥ 0.

(b) (Functoriality) We have (idG, idA)∗ = id. If

π′ : G′′ → G′ , ϕ′ : A′ → A′′

is another compatible pair, then (ππ′, ϕ′ϕ) is compatible and we have

(ππ′, ϕ′ϕ)∗ = (π′, ϕ′)∗(π, ϕ)∗ : Hn(G,A)→ Hn(G′′, A′′) .

Proof (a): We obtain the canonical homomorphisms

Cn(G,A) −→ Cn(G′, A′)
(f : Gn → A) 7→ (ϕ ◦ f ◦ πn : (G′)n //

��

A′

��
Gn // A

)
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These are obviously compatible with the differentials and therefore induce a morphism of
complexes

C ·(G,A)→ C ·(G′, A′) .
The claim follows from Lemma 4.14.

(b): This follows immediately from the construction and 4.14.

Examples/Definition 5.5 (a) Let H ≤ G be a subgroup and let A be a (continuous)
G-module. Then A is a (continuous) H-module by restriction of the operation on H.
The pair

i : H ↪→ G , id : A→ A

is compatible and defines a canonical homomorphism

Res : Hn(G,A)→ Hn(H,A) ,

for every n ≥ 0, which one calls the restriction from G to H.

(b) Let N E G be a normal subgroup, and let A be a (continuous) G-module. Then the
fixed module

AN

is a (continuous) G/N -module by the definition

(gN)a := ga for all g ∈ G and a ∈ A .

(this is well-defined, since na = a for all n ∈ N , if a ∈ AN). The pair

π : G� G/N , i : AN ↪→ A

is compatible by construction and defines a canonical homomorphism

Inf : Hn(G/N,AN)→ Hn(G,A) ,

for every n ≥ 0, which one calls the inflation from G/N to G.

Now we will apply this to the so-called Galois cohomology.

Definition 5.6 Let L/K be a (possibly infinite) Galois extension of fields and let
G = Gal(L/K) be its Galois group, equipped with the Krull topology. A discrete
G-module is a continuous G-module A, where A carries the discrete topology.

Lemma 5.7 Let A be a G-module. Then the following properties are equivalent:

(a) A is a discrete G-module.

(b) For all a ∈ A, the stabiliser

StG(a) = {g ∈ G | ga = a}

(compare Algebra I, Def. 17.4) is open in G.

(c) A = ⋃
U≤G

AU , where the union runs over all open subgroups of G.
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Proof (a) ⇒ (b): For a ∈ A restrict

µ : G× A → A
(g, x) 7→ gx

to the open set G× {a}. The inverse image of the open set {a} is just StG(a)× {a}.

(b) ⇒ (c): For a ∈ A, we have a ∈ AStG(a).

(c) ⇒ (a): Let a ∈ A and let U ≤ G be an open subgroup with a ∈ AU . For (g, b) ∈
µ−1({a}), Ug × {b} is an open neighborhood of (g, b) with µ(Ug × {b}) = {gb} = {a}.

Examples 5.8 (a) In the situation of 5.6, (L,+) and (L×, ·) are discrete Gal(L/K)-
modules.

(b) Every submodule of a discrete G-module is again a discrete G-module.

Remarks 5.9 (a) A discrete Gal(L/K)-module A is also called a Galois module for
L/K, and

Hn(Gal(L/K), A)

is called the n-th Galois cohomology of A. It is also denoted shortly by Hn(L/K,A).

(b) In particular, let Ks be the separable closure of a field K (the set of all separable
elements over K in the algebraic closure K of K). Then Ks/K is Galois, and

GK := Gal(Ks/K)

is called the absolute Galois group of K (compare 20.7 for the case K = Fq). For a
discrete GK-module A one also writes

Hn(K,A) := Hn(Ks/K,A) = Hn(GK , A) .

The understanding of the absolute Galois groups and its Galois cohomology is an
important theme of number theory and arithmetic geometry.

Now let L/K be a Galois extension with Galois group G = Gal(L/K), and let A be a
discrete G-module. If L′ is an intermediate field of L/K, which is Galois over K, and if
UL′ = Gal(L/L′) is the associated closed normal subgroup of G, then

AUL′

is a Gal(L′/K)-module (via the isomorphism Gal(L′/K) ∼= G/UL′), and for another
intermediate field L′′ with L ⊇ L′′ ⊇ L′ ⊇ K and L′′/K Galois we have

AUL′ = (AUL′′ )Gal(L′′/L′)
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for the subgroup Gal(L′′/L′) ⊆ Gal(L′′/K).

L 1

L′′

Gal(L′′/L′)

UL′′ = Gal(L/L′′)

L′

Gal(L′/K)

UL′ = Gal(L/L′) Gal(L′′/K)

K G = Gal(L/K)

Therefore we have an inflation map

(5.10.1) InfL′′/L′ : Hn(L′/K,AUL′ )→ Hn(L′′/K,AUL′′ )

Furthermore, by 5.4 (b) it is obvious that, for another Galois sub extension L′′′/K with
L′′′ ⊇ L′′ ⊇ L′ we have

(5.10.2) InfL′′′/L′ = InfL′′′/L′′ ◦ InfL′′/L′ ,

as well as InfL′/L′ = id.

In particular, we obtain an inductive system

(5.10.3)
(
Hn(L′/K,AUL′ )

)
L′∈K(L/K)

,

with the inflations (5.10.1) as transition maps, where K(L/K) is the inductively ordered
set of the finite partial Galois extensions of L/K (compare 2.4 (d)). For these UL′ is
open and Gal(L′/K) is finite.

Furthermore, for L′, L′′ ∈ K(L/K) and L′ ⊆ L′′ one has a commutative diagram

(5.10.4) Hn(L′′/K,AUL′′ )� v

InfL/L′′

))
Hn(L/K,A)

Hn(L′/K,AUL′ ) ,

InfL′′/L′

OO

( � InfL/L′

55

by (5.10.3) for L′′ = L. By the universal property of the inductive limit (see Exercise 3),
this gives a canonical homomorphism

(5.10.5) lim→
L′∈K(L/K)

Hn(L′/K,AUL′ )→ Hn(L/K,A) .

Explicitly, an element on the left, represented by a x ∈ Hn(L′/K,AUL′ ) for an L′ ∈
K(L/K), is mapped to InfL/L′(x).
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The following theorem shows that one can calculate the Galois cohomology of L/K as
an inductive limit of the cohomologies of the finite groups Gal(L′/K).

Theorem 5.10 The map (5.10.5) is an isomorphism.

Proof By definition, InfL/L′ is induced by the morphism of complexes

. . . // Cn−1(G,A) ∂ // Cn(G,A) ∂ // Cn+1(G,A) // . . .

. . . // Cn−1(Gal(L′/K), AUL′ ) ∂ //

αn−1

OO

Cn(Gal(L′/K), AUL′ ) ∂ //

αn

OO

Cn+1(Gal(L′/K), AUL′ ) //

αn+1

OO

. . .

Here we have αr(f) = ifpr for an r-cochain g : Gal(L′/K)r → AUL′ , where p : G �
Gal(L′/K) = G/UL′ is the projection and i : AUL′ ↪→ A is the inclusion. Obviously all
αr are injective.

Surjectivity of (5.10.5): It suffices to show: If f ∈ Cn(G,A), then there is an L′ ∈ K(L/K)
and a g ∈ Cn(Gal(L′/K), AUL′ ) with αn(g) = f . In fact, if f is an n-cocycle, then g is a
cocycle as well, since αn+1∂g = ∂αng = ∂f = 0, and since αn+1 is injective, and thus we
have [f ] = [αg] = α∗[g] = InfL/L′ [g].

Therefore, let f : Gn → A be an element in Cn(G,A), hence a continuous map. With
G, Gn is compact as well, therefore f(Gn) is compact as well, since A, as a discrete
topological space, is obviously Hausdorff. Since A is discrete, this means that f(Gn) is
finite. Since every element a ∈ A lies in the fixed module AU for some open subgroup
U ≤ G, there is an open subgroup U ≤ G with

f(Gn) ⊆ AU .

Moreover, by passing to an open subgroup, we can assume that U E G is an open
normal subgroup (if U = Gal(L/K ′) for a finite partial extension K ′/K, then consider
U ′ = Gal(L/L′) for the normal closure L′/K of K ′/K).

Furthermore, by the continuity of f and the discreteness of A for every g = (g1, . . . , gn) ∈
Gn, the set f−1({f(g1, . . . , gn)}) is open and therefore contains an open neighborhood
g1U1 × . . .× gnUn =: U(g) of g, with open subgroups U1, . . . , Un of G. As above we can
assume that the Ui are open normal subgroups of G. Since Gn is compact, Gn is covered
by finitely many U(g(1)), . . . , U(g(r)). Let N be the intersection of U above and of all Ui,
which occur in the finitely many U(g(ν)). Then f only depends on the cosets modulo N ,
and therefore is constant on all sets

g1N × . . .× gnN

for all (g1, . . . , gn) ∈ Gn. Furthermore, since N ⊆ U , f has its image in AN .
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If now L′ = LN , then, by (infinite) Galois theory, L′/K is a finite Galois extension and
we have N = Gal(L/L′) = UL′ = ker(G P

� Gal(L′/K)), and by construction, f lies in
the image of

αn : Cn(Gal(L′/K), AUL′ )→ Cn(G,A)
(the inverse image of f is g with g((p(g1), . . . , p(gn))) = f(g1, . . . , gn)).

Injectivity of (5.10.5): Let g ∈ Zn(Gal(L′/K), AUL′ ) with InfL/L′ [g] = [αnL/L′g] = 0.
Therefore there is an f1 ∈ Cn−1(G,A) with ∂f1 = αnL/L′g. By the first step, there is a
finite Galois sub extension L′′/K and a g1 ∈ Cn−1(Gal(L′′/K), AUL′′ ) with αn−1

L/L′′g1 = f1.
Here we may assume that we have L′′ ⊇ L′ (by possibly making the normal subgroup N
above smaller). If we now form

arL′′/L′ : Cr(Gal(L′/K)AUL′ )→ Cr(Gal(L′′/K), AUL′′ )

as above, we obtain

αnL/L′′α
n
L′′/L′g = αnL/L′g = ∂f1 = ∂αn−1

L/L′′g1 = αnL/L′′∂g1 ,

and therefore αnL′′/L′g = ∂g1 by the injectivity of αnL/L′′′ . This means that InfL′′/L′ [g] =
[αnL′′/L′g] = 0, i.e., that, in the inductive limit, [g] is equal to 0.

Finally, we introduce a useful tool for calculating cohomology. Let G be a group with
discrete topology or let G = Gal(L/K) for a Galois extension L/K, equipped with the
Krull topology.

Lemma/Definition 5.11 Let A be an abelian group and let

MG(A) = {f : G→ A | f is continuous}

where A carries the discrete topology. Then MG(A) becomes a discrete G-module by the
definition

(gf)(h) := f(hg)
for g, h ∈ G and is called the coinduced module associated to A.

Proof of the claims: 1) MG(A) is a G-module: It is obvious that 1 · f = f and that
g(f1 + f2) = gf1 + gf2 for g ∈ G. Furthermore we have

(g1(g2f))(h) = (g2f)(hg1) = f((hg1)g2)
= f(h(g1g2)) = ((g1g2)f)(h) ,

and hence g1(g2f) = (g1g2)f for g1, g2 ∈ G.

2) MG(A) is a discrete G-module: For G with discrete topology there is nothing to show;
therefore let G = Gal(L/K) be a Galois group. If f : G → A is continuous, where A
has the discrete topology, then there is, by the proof of Theorem 5.10, an open normal
subgroup N E G, so that we have f(g) = f(gn) for all n ∈ N . But this implies that we
have f = nf for all n ∈ N . The stabilizer of f in G therefore contains N , and hence is
open.
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Remarks 5.12 For G with discrete topology, MG(A) is simply the set of all maps
f : G→ A. In particular, for a finite group G, one has a group isomorphism

MG(A) ∼→ ⊕
σ∈A

A

f 7→ (f(σ−1))σ∈G ,

and this becomes an isomorphism of G-modules, if G operates on the right hand side as
follows:

τ(aσ)σ∈G = (aτ−1σ)σ∈G .
In particular, there is a isomorphism of G-modules

MG(Z) ∼→ Z[G] ,

where Z[G] is the group ring (see Exercise 11). The usefulness of the coinduced G-modules
lies in the following property:

Proposition 5.13 (a) under the assumptions of 5.11 we have

Hn(G,MG(A)) = 0 for all n > 0 .

(b) Furthermore there is a canonical isomorphism

H0(G,MG(A)) ∼= A .

Proof (a) Let n ≥ 1 and let f ∈ Zn(G,MG(A)). Define a map

h : Gn−1 →MG(A)

by
h(g1, . . . , gn−1)(g) := f(g, g1, . . . , gn−1)(1) .

Then h is well-defined and continuous (with respect to the discrete topology on MG(A)):
By the proof of Theorem 5.10, and the continuity of f , there is an open normal subgroup
N E G, such that f : Gn → MG(A) factorizes over (G/N)n. Therefore h(g1, . . . , gn−1)
only depends on the gi mod N , therefore is continuous, i.e., in MG(A), and furthermore
h factorizes over (G/N)n−1 and thus is continuous.

Furthermore, with Definition 3.1 we calculate for g1, . . . , gn, g ∈ G

((∂nh)(g1, . . . , gn))(g)

= [g1h(g2, . . . , gn) +
n−1∑
i=1

(−1)ih(g1, . . . , gigi+1, . . . , gn) + (−1)nh(g1, . . . , gn−1)](g)

= [f(gg1, g2, . . . , gn) +
n−1∑
i=1

(−1)if(g, g1, . . . , gigi+1, . . . , gn) + (−1)nh(g, g1, . . . , gn−1)](1)

= [−(∂f)(g, g1, . . . , gn) + gf(g1, . . . , gn)](1) = (gf(g1, . . . , gn))(1) = f(g1, . . . , gn)(g)
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since ∂f = 0. Therefore we have f = ∂h ∈ Bn(G,MG(A)) as claimed.

(b): For f ∈MG(A) we have: f ∈ H0(G,MG(A)) ⇔ f(h) = f(hg) for all h, g ∈ G ⇔ f
is constant. The map a 7→ f with f(g) = a for all g ∈ G therefore induces the isomorphism
in (b).

Corollary 5.14 If G is a finite group, then we have Hn(G,Z[G]) = 0 for all n > 0.

Lemma 5.15 Let A be a discrete G-module. Then the map

iA : A ↪→ MG(A)
a 7→ fa with fa(g) = ga

is an injective homomorphism of G-modules (where, on the right hand side, A is only
regarded as an abelian group).

Proof For h ∈ G we have fha(g) = g(ha) = (gh)a = fa(gh) = (hfa)(g), therefore
fha = hfa.

Remark 5.16 If we set B := coker iA = MG(A)/A, then we obtain a short exact
sequence of discrete G-modules

0→ A ↪→MG(A)→ B → 0 .

In the long exact cohomology sequence

0→ AG → (MG(A))G → BG → H1(G,A)→ . . . ,

by 5.13, we have Hn(G,MG(A)) = 0 for n ≥ 1. This gives an exact sequence

0→ AG ↪→ A→ BG → H1(G,A)→ 0

and isomorphisms
H i−1(G,B) ∼→ H i(G,A) .

Thus one can calculate the cohomology of A in degree i (one denotes this also as dimension
i) by the cohomology of B in degree i− 1. This is called the method of the dimension
shift.

Another application is:

Theorem 5.17 Let G be a finite group of order N . For every G-module A and every
n > 0 we have

N ·Hn(G,A) = 0 .
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Proof We have the homomorphisms of G-modules

A
i→ MG(A) π→ A

a 7→ (σ 7→ σa)
f 7→ ∑

σ∈G
σ−1f(σ) .

For i = iA (and general G!) see 5.15. The map π = πA is only defined for finite G. The
additivity is obvious, and for τ ∈ G we have

π(τf) = ∑
σ∈G

σ−1f(στ) = ∑
σ∈G

τ(στ)−1f(στ) = τπ(f) .

Obviously, we have πi = N , i.e., π(i(a)) = N · a. Then the composition

Hn(G,A) i∗→ Hn(G,MG(A)) π∗→ Hn(G,A)

is the multiplication by N (N∗ = N , as one can see from the definition). On the other
hand, this composition is zero, since Hn(G,MG(A)) = 0 (n > 0). The claim follows.
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6 Hilbert 90 and Kummer theory

Theorem 6.1 (Hilbert’s Theorem 90) Let L/K be a Galois extension with Galois group
G. Then we have

H1(L/K,L×) = H1(G,L×) = 0 .

Proof By the limit property of Theorem 5.10 it suffices to show this for finite Galois
extensions (Note: For an intermediate field M of L/K, we have L× Gal(L/M) = M× by
Galois theory). Therefore let G be finite and let

f : G→ L×

be a 1-cocycle. By the linear independence of field homomorphisms (Algebra I, Corollary
20.3) ∑

σ∈G
f(σ)σ

is not the zero map; therefore there is an α ∈ L× with

β := ∑
σ∈G

f(σ)σ(α) 6= 0 ,

i.e., β ∈ L×. Then, for τ ∈ G, we have

τ(β) = ∑
σ∈G

τf(σ)τσ(α) = ∑
σ∈G

f(τ)−1f(τσ)τσ(α) = f(τ)−1β ,

by the cocycle property (f(τσ) = τf(σ) · f(τ)). Thus

f(τ) = τ(β)−1 · β = τ(β−1) · (β−1)−1 for all τ ∈ G ,

is a 1-coboundary.

This theorem has many applications; one is the Kummer theory (compare Algebra I,
§20):

Let K be a field and let Ks be a separable closure of K. Furthermore let n be an integer,
which is invertible in K (i.e., char(K) - n) and let µn ⊆ K×s be the group of the n-th
roots of unity in Ks. Then µn is cyclic of the order n (see Algebra I, Lemma 15.6(e)).
Every separable extension L of K we regard as subfield of Ks. For every such L let
µn(L) = µn ∩ L be the set of the n-th unit roots in L.

Theorem 6.2 (Kummer isomorphism) Let L/K be a Galois extension of fields. Then
there is an isomorphism

(L×)n ∩K×/(K×)n δ→∼ H1(L/K, µn(L)) ,

which, for an α ∈ K× with α = βn, β ∈ L, maps the class of α to the class of the cocycle

σ 7→ σ(β)
β
∈ µn(L) .
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Proof We have an exact sequence of discrete Gal(L/K)-modules

1→ µn(L) ↪→ L×
n→ (L×)n → 1 ,

where n→ denotes the homomorphism x 7→ xn. This gives the exact cohomology se-
quence

K×
n→ (L×)n ∩K× δ→ H1(L/K, µn(L))→ H1(L/K,L×) = 0 .

Here we used that for G = Gal(L/K) we have: (L×)G = K×, ((L×)n)G = (L×)n ∩K×,
as well as H1(G,L×) = 0 (Hilbert 90). Furthermore δ is the connecting homomorphism.
By the exactness of the cohomology sequence, the surjectivity of δ and the claim of the
theorem follows with the homomorphism theorem, since the image of the first map is
(K×)n. The explicit description of δ follows from the definition of δ and of the differential
∂0 : L× → C1(G,L×).

Corollary 6.3 There is an isomorphism

K×/(K×)n ∼→ H1(K,µn) .

Proof This follows from 6.2 for L = Ks, since we have (K×s )n ∩K× = K×: For every
α ∈ K× there is a β ∈ K×s with βn = α. Initially, there is such β in the algebraic closure,
as a zero of the polynomial Xn − α, but β is in Ks, since this polynomial is separable
(since char(K) - n, compare Algebra I, Proof of Theorem 20.5).

Remark 6.4 Therefore we have an exact sequence of discrete GK-modules

1→ µn → K×s
n→ K×s → 1 ,

the so-called Kummer sequence. Corollary 6.3 follows directly from the associated
cohomology sequence.

Theorem 6.2 can be strengthened to an existence claim.

Definition 6.5 Let K contain all n-th roots of unity (so that µn(K) = µn). A Galois
extension L/K is called a Kummer extension of exponent n, if L/K is abelian of exponent
n.

Here we define for n ∈ N:

Definition 6.6 (a) An abelian group A is called of exponent n, if nA = 0, i.e., na = 0
for all a ∈ A.

(b) A Galois extension L/K is called abelian (resp. abelian of exponent n), if Gal(L/K)
is abelian (resp. abelian of exponent n).
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Theorem 6.7 (Kummer correspondence) Assume that µn ⊆ K. Then there are
inclusion-preserving bijections

K :=


finite Kummer-
extensions L/K
of exponent n


φ−→
ψ←−


subgroups ∆ ⊆ K×

with (K×)n ⊆ ∆ and
∆/(K×)n finite

 =: D

which are inverse to each other, via the assignments

L
φ7→ ∆L := (L×)n ∩K×

L∆ := L( n
√

∆)
ψ

←p ∆ .

Here let L( n
√

∆) = L( n
√
α | α ∈ ∆).

Proof For L ∈ K we have (K×)n ⊆ ∆L ⊆ K×, and by Theorem 6.2, we have an
isomorphism

∆L/(K×)n ∼→ H1(Gal(L/K), µn) .

Since L/K is finite, H1(Gal(L/K), µn) is obviously finite, therefore ∆L lies in D. Con-
versely if we have ∆ ∈ D, then, for every α ∈ ∆, the extension K( n

√
α)/K is Galois, with

cyclic Galois group of exponent n (since µn ⊆ K, by the Kummer theory from Algebra
I, §20). Let α1, . . . , αr ∈ ∆ be elements, whose cosets form a system of representatives
for the finite group ∆/(K×)n. For every α ∈ ∆ we then have α = αi1 . . . αisγ

n with
i1, . . . , is ∈ {1, . . . , r} and γ ∈ K× and thus

K( n
√
α) ⊆ K( n

√
αi1 , . . . , n

√
αis) .

Hence L∆ = K( n
√

∆) = K( n
√
α1, . . . , n

√
αr) is the compositum of the fields K( n

√
αi) and is

thus finite over K and abelian of exponent n, therefore in K. Therefore the assignments
φ and ψ are well-defined.

Furthermore we have

(6.7.1) K( n
√

∆L) ⊆ L , i.e., ψ φL ⊆ L .

In fact, for α ∈ φL = ∆L = (L×)n ∩ K× we have K( n
√
α) ⊆ L. Here n

√
α denotes

an element γ ∈ Ks with γn = α. On the other hand, by definition we have α = βn

for a β ∈ L×. Thus (γ/β)n = α/α = 1, therefore γ/β = ζ ∈ µn ⊆ K. It follows
K(γ) = K(β) ⊆ L. Overall follows ψφL = K( n

√
∆L) ⊆ L, therefore (6.7.1). On the

other hand we have

(6.7.2) (L×∆)n ∩K× ⊇ ∆ , i.e., φψ∆ ⊇ ∆ .

In fact, let L∆ = K( n
√

∆) and α ∈ ∆. Then there is a β ∈ L∆ with βn = α, and it
follows that α ∈ (L×∆)n ∩K× = φψ∆.
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Furthermore φ and ψ are obviously inclusion-preserving, i.e., we have

(6.7.3) L ⊂ L′ ⇒ ∆L ⊂ ∆L′

∆ ⊂ ∆′ ⇒ L∆ ⊂ L∆′ .

Now we show ψφL = L for L ∈ K. By assumption, Gal(L/K) is a finite abelian group
of exponent n. We use

Theorem 6.8 (Main theorem on finite abelian groups) Every finite abelian group is a
direct product of cyclic groups.

Proof Follows from the theory of principal ideal domains – here Z.

Hence we have

(6.7.4) Gal(L/K) =
r⊕
i=1

Ai

with cyclic groups Ai, which are necessarily of exponent n as well. The projections

Gal(L/K)� Ai

correspond, by Galois theory, to partial extensions Li ⊆ L with Gal(Li/K) = Ai
(Li = LA

′
i with A′i = ⊕j 6=iAj), and by (6.7.4), L is the compositum of the Li. By

Kummer theory for cyclic extensions (Algebra I, Theorem 20.7) there is a αi ∈ K with
Li = K( n

√
αi) for every i (if Li/K is cyclic of degree mi, we have mi | n, therefore

µmi ⊆ µn ⊂ K, and by Algebra I 20.7 there is a βi ∈ K with Li = L( mi
√
βi). Then we

can take αi = β
n
mi
i ). By construction we have n

√
αi ∈ L, therefore αi ∈ ∆L, therefore

Li ⊆ K( n
√

∆L). Thus the compositum L also lies in K( n
√

∆L). From (6.7.1) follows the
equality.

Now we show φψ∆ = ∆. Let ∆̃ = φψ∆ and let L̃ = L∆ = ψ∆, so that ∆̃ = ∆L̃. By
(6.7.2) we have ∆ ⊆ ∆̃, and we obtain a diagram

∆̃/(K×)n = (L̃×)n ∩K×/(K×)n δ−→∼ H1(L̃/K, µn)⋃
|

∆/(K×)n

Assume ∆ $ ∆̃. Then U := δ(∆/(K×)n) is a proper subgroup of

H1(L̃/K, µn) = Hom(G, µn)

where G = Gal(L̃/K). Let

H = {σ ∈ G | χ(σ) = 1 for all χ ∈ U} ,
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By the following Theorem 6.10 (see Remark 6.11) we have H 6= 1. On the other hand we
have

σ ∈ H ⇔ δ(α)(σ) = 1 for all α ∈ ∆
⇔ σ( n

√
α) = n

√
α for all α ∈ ∆

⇔ σ = 1 ,

since L̃ = K( n
√

∆) – contradiction!. Thus we have ∆̃ = ∆, i.e., φψ∆ = ∆, and we proved
Theorem 6.7.

Definition 6.9 For a finite abelian group A

A∨ := Hom(A,Q/Z)

is called the Pontrjagin-dual of A.

Theorem 6.10 (Duality theory for finite abelian groups) Let A be a finite abelian
group.

(a) A∨ is non-canonically isomorphic to A. In particular, A∨ is again finite and abelian
and has the same order as A

(b) If we have A of exponent n ∈ N, then we have

A∨ = Hom(A,Z/nZ) .

(c) The canonical map
ϕA : A → A∨∨

a 7→ (χ 7→ χ(a))
is an isomorphism.

(d) If
0→ A

α→ B
β→ C → 0

is an exact sequence of finite abelian groups, then

0→ C∨
β∨→ B∨

α∨→ A∨ → 0

is exact (For an arbitrary homomorphism ϕ : A → B let ϕ∨ : B∨ → A∨ be defined by
B∨ 3 χ 7→ χ ◦ ϕ ∈ A∨).

(e) For a subgroup U ≤ A let

U⊥ = {χ ∈ A∨ | χ|U = 0} .

Then the assignment
U 7→ U⊥

is an inclusions-reversing bijection between the subgroups of A and the subgroups of A∨.
Thus we have A∨/U⊥ ∼→ U∨.
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Remark 6.11 From this theorem follows the relation H 6= {1} in the proof above: If
we identify both cyclic groups µn and Z/nZ, then we have

Hom(G, µn) ∼= Hom(G,Z/nZ) = G∨ .

If we pass to additive notation, then, for U � G∨, we obtain the exact sequence

0→ U → G∨ → G∨/U → 0

with non-trivial G∨/U and an exact sequence

0→ (G∨/U)∨ → G∨∨ → U∨ → 0

where (G∨/U)∨ is non-trivial. Therefore the map G∨∨ → U∨ (which maps ψ ∈ (G∨)∨
to ψ|U ) has a non-trivial kernel. If we use the isomorphism ϕG : G ∼→ G∨∨, then there
is a non-trivial a ∈ G with ϕG(a)(χ) = χ(a) = 0 for all χ ∈ U . This gives a non-trivial
element in the group H above.

Proof of Theorem 6.10: (b): If A has the exponent n, then for χ ∈ A∨ we have

(nχ)(a) = n · χ(a) = χ(na) = χ(0) = 0 .

In particular, χ has image in Q/Z[n] = Z/nZ (compare 4.22), and A∨ is again of exponent
n.

In the following it suffices to consider groups of a fixed exponent n.

(a) For Z/nZ we have canonically

Z/nZ ∼→ Hom(Z/nZ,Z/nZ) = (Z/nZ)∨
b 7→ (ϕb with ϕb(1) = b)

(therefore ϕb(a) = ab). For a finite cyclic group A follows a non-canonical isomorphism
A
∼→ A∨ by choice of an isomorphism A ∼= Z/nZ. By Theorem 6.8, for an arbitrary finite

abelian group A, there are cyclic subgroups A1, . . . , Ar with

A = A1 ⊕ . . .⊕ Ar .

But there is a canonical isomorphism

(6.10.1)
A∨1 ⊕ . . .⊕ A∨r

∼→ (A1 ⊕ . . .⊕ Ar)∨

(χ1, . . . , χr) 7→ χ with χ(a1, . . . , ar) =
r∑
i=1

χi(ai)

This implies (a).

(c): This follows easily for cyclic groups A: if A is of the order n and a is a generator, then,
for everym ∈ Z/nZ there is exactly one χm with χm(a) = m. Then the homomorphism

ϕA : A→ A∨∨
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is injective, since we have χ1(ka) = k 6= 0 for ka 6= 0. Since A∨∨ has the same order as
A, ϕA is bijective. The case of an arbitrary A follows again with (6.10.1).

(d) The exactness of
0→ C∨

β∨→ B∨
α∨→ A∨

follows easily. (Later we will prove this in the general frame of R-modules). Then α∨
is surjective, since we have |A∨| = |A| = |B| · |C|−1 = |B∨| · |C∨|−1 = |B∨/C∨|, the
injection B∨/C∨ ↪→ A∨ (homomorphic theorem!) is therefore an isomorphism.

(e): For subgroups U, V ⊆ A, the relation

U ⊆ V ⇒ V ⊥ ⊆ U⊥

is obvious. If we define an ‘orthogonal complement’ for subgroups X ⊆ A∨

X⊥ = {a ∈ A | χ(a) = 0 ∀ χ ∈ X} ,

we show that
X 7→ X⊥

is an inverse image to U 7→ U⊥: The exact sequence

0→ U
i→ A→ A/U → 0

by (d) gives an exact sequence

0→ (A/U)∨ → A∨
i∨→ U∨ → 0 .

But obviously we just have U⊥ = ker i∨; this gives an exact sequence

0→ U⊥
j
↪→ A∨

i∨→ U∨ → 0 ,

where j is the inclusion. By further dualizing we obtain a commutative diagram

0 // U∨∨
i∨∨ // A∨∨

j∨ // (U⊥)∨ // 0

U �
� //

ϕU o

OO

A

ϕAo

OO

with an exact top row. Obviously we have U⊥⊥ = ker(j∨ ◦ ϕA), and U⊥⊥ = U follows.
In the same way, X⊥⊥ = X follows for X ≤ A∨.
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7 Properties of group cohomology

Theorem 7.1 Let {Ai | i ∈ I} be a family of G-modules. Then one has canonical
isomorphisms

(a) Hq(G, ⊕
i∈I
Ai) ∼= ⊕

i∈I
Hq(G,Ai)

(b) Hq(G, ∏
i∈I
Ai) ∼=

∏
i∈I
Hq(G,Ai).

Exercise!

Theorem 7.2 If G is a (topological) group and

0 // A i //

f
��

B
j //

g
��

C //

h
��

0

0 // A′ // B′ // C ′ // 0

a commutative diagram of (continuous) G-modules with exact rows.

Then the diagrams
Hq(G,C) δq //

hq∗
��

Hq+1(G,A)

fq+1
∗
��

Hq(G,C ′) (δ′)q // Hq+1(G,A′)

are commutative for all q.

Exercise!

Proposition 7.3 Let
0→ A→ B → C → 0

be an exact sequence of (continuous) G-modules, and let H ≤ G be a subgroup of G.
Then the diagram

Hq(G,C) δ //

Resq
��

Hq+1(G,A)

Resq+1

��
Hq(H,C) δ // Hq+1(H,C)

is commutative.

Proposition 7.4 If N / G is a normal subgroup of G, and the sequence

0→ AN → BN → CN → 0
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is exact as well, then the diagram

Hq(G/N,CN) δ //

Infq
��

Hq+1(G/N,AN)

Infq+1

��
Hq(G,C) δ // Hq+1(G,A)

is commutative

Proof Both results follow immediately from the fact that the maps on the cochains
commute with the differentials.

Theorem 7.5 Let A be a (continuous) G-module, and let N ≤ G be a normal subgroup.
If H i(N,A) = 0 for i = 1, . . . , q − 1, and q ≥ 1, then the sequence

0→ Hq(G/N,AN) Inf−→ Hq(G,A) Res−→ Hq(H,A)

is exact.

Proof We prove this by induction on the dimension q, using dimension shifting, and
Exercise 1 from Exercise sheet 4 for the initial induction step.

If we tensor the exact sequence

0→ Z→ Z[G]→ JG → 0

with A, we get an exact sequence

0 // A // A⊗ Z[G] // A⊗ JG // 0

0 // A // B̈ // C̈ // 0

Moreover, since H1(N,A) = 0, we get an exact cohomology sequence

0→ AN → BN → CN → 0

Hence we have the following commutative diagram

0 // Hq−1(G/N,CN) Inf //

o δ
��

Hq−1(G,C) Res //

o δ
��

Hq−1(N,C)
o δ
��

0 // Hq(G/N,AN) Inf // Hq(G,A) Res // Hq(N,A)

which gives the induction step from q − 1 to q.
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In fact, B is cohomologically trivial, so that the exact sequence

0→ A→ B → C → 0

induces isomorphisms
Hq−1(G,C) δ−→

∼
Hq(G,A) .

Moreover, BN is a cohomologically trivial G/N -module as well, so that the sequence

0→ AN → BN → CN → 0

induces an isomorphism

Hq−1(G/N,CN) δ−→
∼
Hq(G/N,AN)

Theorem 7.6 Let G be a (topological) group, let H ≤ G be a subgroup, and let
f : A→ B be a morphism of (continuous) G-modules

(a) Then the diagram
Hq(G,A) f∗ //

Resq
��

Hq(G,B)
Resq
��

Hq(H,A) f∗ // Hq(H,B)

is commutative.

(b) Assume that N ≤ G is a normal subgroup. Then the diagram

Hq(G/N,AN) f∗ //

Infq
��

Hq(G/N,BN)

Infq
��

Hq(G,A) f∗ // Hq(G,B)

is commutative.

Proof This follows easily from the definitions.

An amazing property of the connecting morphism is that it is “anticommutative”:
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Theorem 7.7 Assume that the diagram of G-modules and G-homomorphisms

0

��

0

��

0

��
0 // A′ //

��

A //

��

A′′ //

��

0

0 // B′ //

��

B //

��

B′′ //

��

0

0 // C ′ //

��

C //

��

C ′′ //

��

0

0 0 0

is commutative with exact rows and columns. Then the diagram

Hq−1(G,C ′′′) δ //

δ
��

Hq(G,C ′)
−δ
��

Hq(G,A′′) δ // Hq+1(G,A′)

commutes.

Proof Let D be the kernel of the composite map B → C ′′; thus the sequence

0→ D → B → C ′′ → 0

is exact. We define G-homomorphisms

i : A′ → A⊕B′ by i(a′) = (a, b′), where a (resp. b′ is the image of a′ in A
(resp. of b′ in B′),

j : A⊕B′ → D by j(a, b′) = d1 − d2, where d1 (resp. d2) is the image of a
(resp. of b′) in D ⊆ B.

It is easy to verify that with these definition the sequence

0→ A′
i→ A⊕B′ j→ D → 0

is exact, and the diagram

A′ //

id

A // A′′ // B′′ // C ′′

id

A′
i //

− id

A⊗B′ j //

(0,− id)
��

(id,0)

OO

D //

OO

��

B

OO

//

��

C ′′

id

A′ // B′ // C ′ // C // C ′′
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commutes. Because im(D → B′′) ⊆ im(A′′ → B′′) and A′′ → B′′ is injective, there is a
G-homomorphism D → A′′ which extends the above diagram. Similarly, since im(D →
C) ⊆ im(C ′ → C) and C ′ → C is injective, there is an analogous G-homomorphism
D → C ′, Since the resulting extended diagram is commutative, it follows from 3.5 that
the following diagram

Hq−1(G,C ′′) δ //

id

Hq(G,A′′) δ // Hq+1(G,A′)

id

Hq−1(G,C ′′)

id

δ // Hq(G,D)

OO

δ //

��

Hq+1(G,A′)
− id

Hq−1(G,C ′′) δ // Hq(G,C ′) δ // Hq+1(G,A′) ,

commutes as well, which immediately implies the theorem.
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8 Tate cohomology for finite groups

Let G be a finite group, and let A be a G-module. John Tate observed that one can
extend the series of cohomology groups in positive degrees

H0(G,A), H1(G,A), H2(G,A), . . .

by also introducing cohomology groups with negative degrees (these can also be regarded
as homology groups). They can be obtained by a dualizing process, nd one gets, similarly
as before, modified groups C0(G,A) = A for n = 0, and Cn(G,A) = Hom(Gn, A) for
n ≥ 1, and now also groups in negative degrees C−n−1(G,A) = Hom(Gn, A) (so that
C−1(G,A) = A), i.e., a complex

. . .→ C−2(G,A) ∂−1
−→ C−1(G,A) ∂0

−→ C0(G,A) ∂1
−→ C1(G,A) ∂2

−→ C2(G,A)→ . . .

Here the differentials ∂n for n ≥ 1 are the known ones, and the differentials ∂n for n ≤ 0
are

∂0x = NGX, where NGx = ∑
σ∈G

σx,

∂−1x = ∑
σ∈G

(σ−1x(σ)− x(σ))

∂−n−1x(σ1, . . . , σn) = ∑
σ∈G

[σ−1x(σ, σ1, . . . , σn)

+
n∑
i=1

(−1)ix(σ1, . . . , σi−1, σ, σ
−1, σi+1, . . . , σn)

+(−1)n+1x(σ1 . . . , σn, σ)], for n ≥ 1.

8.1 For the groups in low dimension we therefore obtain the following modified
cohomology groups:

Ĥ0(G,A) : Z0 = ker ∂1 = AG (= H0(G,A))
B0 = im ∂0 = NGA := {NGa | a ∈ A}

Hence Ĥ0(G,A) = AG/NGA.

Ĥ−1(G,A) : Z−1 = ker ∂0 = NGA := {a ∈ A | NGa = 0}
B−1 = im ∂−1 = IGA := {(σ − 1)a | a ∈ A}

Here IG ⊆ Z[G] is the so-called augmentation ideal, IG =
{ ∑
σ∈G

nσσ |
∑
σ∈G

nσ = 0
}
.

Hence H−1(G,A) = NGA/IGA.

Corollary 8.2 One has canonical isomorphisms

H−2(G,Z) δ−→
∼
H−1(G,Z) −→ Gab ,

where Gab = G/[G,G] is the maximal abelian quotient of G.
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Proof Since Z[G] has trivial cohomology for n > 0 (see Corollary 5.14), the long exact
cohomology sequence for

0→ IG → Z[G]→ Z→ 0

gives an isomorphism
H−2(G,Z) δ−→

∼
H−1(G, IG) .

Since H−1(G, IG) ∼= IG/I
2
G (as NGIG = IG), it then suffices to construct an isomorphism

IG/I
2
G
∼−→ Gab .

For this we consider the map

ϕ G −→ IG/I
2
G , σ 7→ σ − 1 + I2

G

Since σ · τ − 1 = (σ − 1) + (τ − 1) + (σ − 1) · (τ − 1), this map is a homomorphism.
Moreover, since IG/I2

G is abelian, the kernel of ϕ contains the commutator group [G,G],
which gives a group homomorphism

log : G/[G,G]→ IG/I
2
G

Now we define a group homomorphism

exp : IG/I2
G → G/[G,G]

by usiong that IG is the free abelian group generated by the elements σ − 1, where
σ ∈ Gr {1}. Hence setting

σ − 1 7→ σ[G,G] ,
we obtain an evidently surjective homomorphism

IG → G/[G,G] .

Since
(σ − 1) · (τ − 1) = (στ − 1)− (σ − 1)− (τ − 1)

is mapped to
στσ−1τ−1[G,G] = 1 ,

the elements in I2
G lie in the kernel, so that we obtain a homomorphism

exp : IG/I2
G → G/[G,G]

σ − 1 + I2
G 7→ σG′ ,

with the property that log ◦ exp = id and exp ◦ log = id. Therefore the map

log : G/[G,G]→ IG/I
2
G

is an isomorphism.
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The method used in Corollary 8.2 is called the method of dimension shifting.

We have a short exact sequences of G-modules

0→ IG → Z[G]→ Z→ 0

and
0→ Z→ Z[G]→ JG → 0

If A is a G-module, we can tensor these exact sequences with A and obtain the short
exact sequences (since Z, IG,Z[G] and JG are free Z-modules)

0→ IG ⊗ A→ Z[G]⊗ A→ A→ 0

and
0→ A→ Z[G]⊗ A→ JG ⊗ A→ 0 .

Then these sequences induce isomorphisms

Hq(G,A) δ−→
∼
Hq+1(G, IG ⊗ A)

Hq(G, JG ⊗ A) δ−→
∼
Hq+1(G,A)

Writing
Am = J⊗mG ⊗ A for m ≥ 0 ,

Am = I⊗mG ⊗ A for m ≤ 0 ,

and using iteration

Hq−m(G,Am) δ−→Hq−(m−1)(G,Am−1) ∼−→ . . . Hq(G,A)

and similarly for δ−1 we get the isomorphism

δm : Hq−m(G,Am) ∼→ Hq(G,A)

for m ∈ Z.
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9 Cohomology of cyclic groups

Let G be a cyclic group of order n with generator σ. Then, for the group ring Z[G] we
have

Z[G] =
n−1
⊕
i=0
Zσi

NG = 1 + σ + . . .+ σn−1

and, because σk−1 = (σ − 1)(σk−1 + . . .+ σ + 1)(k ≥ 1), the augmentation ideal is the
principal ideal of Z[G] generated by σ − 1, i.e.,

IG = Z[G] · (σ − 1) .

Theorem 9.1 Let G be a cyclic group, and let A be a G-module. Then

Hq(G,A) ∼= Hq+2(G,A) for all q ∈ Z .

Proof It suffices to specify an isomorphism

H−1(G,A) ∼= H1(G,A) .

In fact, given this, the general case follows by dimension shifting. The group Z1 of
1-cocycles consists of all crossed homomorphisms of G in A. Therefore, if x ∈ Z1, then

x(σk) = σx(σk−1) + x(σ)
= σ2x(xk−2) + σx(σ) + x(σ)
=

k−1∑
i=0

σix(σ) (k ≤ 1), and
x(1) = 0, because x(1) = x(1) + x(1) .

It follows that
NG x(σ) =

n−1∑
i=0

σix(σ) = x(σn) = x(1) = 0 ,

i.e., x(σ) ∈ NGA.

Conversely, it is easy to see that, if a ∈ NGA = Z−1 is a (−1)-cocycle, then

x(σ) = a, and x(σk) =
k−1∑
i=0

σia

defines a 1-cocycle.

Therefore the map
x 7→ x(σ)

is an isomorphism from Z1 to Z−1 = NGA
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Under this isomorphism, the group R1 of 1-coboundaries is mapped to the group R−1 of
(−1)-coboundaries:

x ∈ R−1 ⇔ x(σk) = σka− a with fixed a ∈ A
⇔ x(σ) = σa− a
↔ x(σ) ∈ IGA = R−1 .

Thus for a cyclic group G we have isomorphisms

H2q(G,A) ∼= H0(G,A)
H2q+1(G,A) ∼= H1(G,A) .

If
0→ A→ B → C → 0

is an exact sequence of G-modules, we can write the corresponding long exact sequence
in the form

H−1(G,A) // H−1(G,B)

''
H0(G,C)

77

H1(G,C)

ww
H0(G,B)

gg

H0(G,A)oo

For the exactness at the term H−1(G,A) note that the isomorphism H1(G,A) ∼=
H−1(G,A) from Theorem 9.1 fits into the commutative diagram

H−1(G,A) //

o
��

H−1(G,B)
o
��

H1(G,A) // H1(G,B)

so that the kernel of the map below corresponds to the kernel of the map above.

For many index and order considerations the notion of a Herbrand quotient is very
useful.

We introduce it in a more general from:

Definition 9.2 Let A be an abelian group, and let f, g endomorphisms of A such that
f ◦ g = g ◦ f = 0, so that we have inclusions im g ⊆ ker f and im f ⊆ ker g. Then the
Herbrand quotient is defined as

qf,g(A) = (ker f : im g)
(ker g : im f)
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provided both indices are finite.

We are mainly interested in the following special case:

Let A be a G-module with G cyclic of order n. Consider the endomorphisms

f = D = σ − 1 and g = N = 1 + σ + . . .+ σn−1 ,

where σ is a generator of G. Obviously we have

D ◦N = N ◦D = 0 ,

and
kerD = AG, imN = NGA; kerN = NGA, imD = IGA .

Hence if both cohomology groups H0(G,A) and H−1(G,A) are finite, then

qD,N(A) = |H0(G,A)|
|H−1(G,A)| = |H

2(G,A)|
|H1(G,A)| .

If this holds, we call A a Herbrand module. For these special Herbrand quotients
qD,N(A) we want to use the following notation:

Definition 9.3 Let G be a cyclic group and A a G-module. Then

h(A) = |H0(G,A)|
|H−1(G,A)| = |H

2(G,A)|
|H1(G,A)| .

These special Herbrand quotients h(−) are multiplicative:

Theorem 9.4 Let G be a cyclic group and

0→ A→ B → C → 0

an exact sequence of G-modules. Then

h(B) = h(A) · h(C)

in the sense that if two of these quotients are defined, then so is the third, and equality
holds.

Proof Consider the long exact cohomology sequence, written as the hexagon

H−1(G,A) f1 // H−1(G,B)
f2

''
H0(G,C)

f6
77

H1(G,C)

f3ww
H0(G,B)

f5

gg

H0(G,A)
f4

oo
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If we write Fi for the order of the image of fi, then

|H−1(G,A)| = F6 · F1, |H−1(G,B)| = F1 · F2, |H−1(G,C)| = F2 · F3,
|H0(G,A)| = F3 · F4, |H0(G,B)| = F4 · F5, |H0(G,C)| = F5 · F6,

and therefore

(9.4.1) |H−1(G,A)| · |H−1(G,C)| · |H0(G,B)| = |H−1(G,B)| · |H0(G,A)| · |H0(G,C)|,

Hence whenever two of the three quotients h(A), h(B), h(C) are defined, then so is the
third, and the identity (9.4.1) implies the formula h(B) = h(A) · h(C).

Another special case of a Herbrand quotients occurs when A is an abelian group and f
and g are the endomorphisms f = 0 and g = n (n a positive integer), i.e., g is the map
‘multiplication by n’ a 7→ n · a ∈ A. Then we have

(9.4.2) q0,n(A) = (A : nA)
|nA|

(nA = {a ∈ A | n · a = 0}) .

In fact, this is just a special case of what we considered above:

Proposition 9.5 If the cyclic group G of order n acts trivially on A, then

h(A) = q0,n(A) .

In particular, the Herbrand quotients q0,n are multiplicative:

Proposition 9.6 If 0→ A→ B → C → 0 is an exact sequence of abelian groups, then

q0,n(B) = q0,n(A) · q0,n(C) ;

this again in the sense that the existence of two of these quotients implies the existence
of the third.

Proposition 9.7 If A is a finite group, then we always have

qf,g(A) = 1 .

Proof Because of the isomorphisms im f ∼= A/ ker f and im g ∼= A/ ker g,

|A| = | ker f | · | im f | = | ker g| · | im g| ,

which implies the claim.

In particular, a finite G-module A has Herbrand quotient h(A) = 1. This remark,
together with the multiplicativity shown in 9.4, implies the following:

If A is a submodule of finite index in the G-module B, then
h(B) = h(A) .
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It is in fact this statement that is most useful in applications of the Herbrand quotient.
If the direct computation of the order of the cohomology groups of a G-module B is not
possible, the above fact allows us to consider without loss an appropriate submodule
A, provided it has finite index. This type of consideration historically motivated the
definition of the Herbrand quotient.

In the following we will show how to determine h in case of a cyclic group G of prime
order p from the Herbrand quotients q0,p. For this we need

Lemma 9.8 Let g and f be two endomorphisms of an abelian group A such that
f ◦ g = g ◦ f . Then

q0,gf (A) = q0,g(A) · q0,f (A) ,

where again all three quotients are defined whenever any two of them are.

Proof Consider the commutative diagram with exact rows

0 // g(A) ∩ ker f //

��

g(A) f //

��

fg(A) //

��

0

0 // ker f // A
f // f(A) // 0

We obtain the exact sequence

0→ ker f/g(A) ∩ ker f → A/g(A)→ f(A)/fg(A)→ 0 ,

so that
(A : fg(A))
(A : f(A)) = (A : g(A)) · |g(A) ∩ ker f |

| ker f | .

If we observe that

ker fg/ ker g = g−1(g(A) ∩ ker f)/g−1(0) ∼= g(A) ∩ ker f ,

we in fact get
(A : gf(A))
| ker gf | = (A : g(A))

| ker g| ·
(A : f(A))
| ker f | .

It is easy to verify that all three quotients are defined, if two of them are.

Now we prove the important

Theorem 9.9 Let G be a group of prime order p and let A be a G-module. If q0,p(A)
is defined, then q0,p(AG) and h(A) are also defined and we have

h(A)p−1 = q0,p(AG)p/q0,p(A) .

60



Proof Let σ be a generator of G and let D = σ − 1. Consider the exact sequence

0→ AG → A
D→ IGA→ 0 .

From the fact that IGA is a subgroup as well as a factor group of A, we conclude imme-
diately that if q0,p(A) is defined, then q0,p(IGA) is also defined. Hence as a consequence
of 9.6, q0,p(AG) is also defined, and we have

(9.9.1) q0,p(A) = q0,p(AG) · q0,p(IGA) .

Since G acts trivially on AG, it follows from 9.5 that q0,p(AG) = h(AG).

To determine the quotient q0,p(IGA) we use the following interesting trick. Since the ideal
Z ·NG = Z(∑p−1

i=0 σ
i) annihilates the module IGA, we can consider IGA as a Z[G]/Z ·NG-

module. Now the ring Z[G]/Z ·NG is isomorphic to the ring Z[X]/(1 +X + . . .+Xp−1)
with an indeterminate X. But the latter is isomorphic to the ring Z[ζ] of integral elements
of the field Q(ζ) of p-th roots of unity (ζ a primitive p-th root of unity), and the map
σ 7→ ζ induces an isomorphism Z[G]/Z ·NG

∼= Z[ζ]. In Z[ζ] we now have the well-known
decomposition p = (ζ − 1)p−1 · e, e a unit, so that we can write

p = (σ − 1)p−1 · ε, ε unit in Z[G]/Z ·NG .

Since the endomorphism induced by ε is an automorphism on IGA, we find q0,ε(IGA) = 1.
If we now apply Lemma 9.8, we obtain

q0,p(IGA) = q0,Dp−1(IGA) · q0,ε(IGA) = q0,D(IGA)p−1 = 1/qD,0(IGA)p−1 .

Since N = NG is the 0-endomorphism on IGA, we also have

q0,p(IGA) = 1/qD,0(IGA)p−1 = 1/qD,N(IGA)p−1 = 1/h(IGA)p−1 .

In combination with (9.9.1), this implies

q0,p(AG) = h(AG), q0,p(IGA) = 1/h(IGA)p−1, q0,p(A) = q0,p(AG)/h(IGA)p−1 .

On the other hand, the sequence 0→ AG → A→ IGA→ 0 gives the formula

h(A)p−1 = h(AG)p−1 · h(IGA)p−1 .

and the claim h(A)p−1 = q0,p(AG)p/q0,p(A) follows by substitution.

In global class field theory we will apply this theorem to certain unit groups, about
which we only know that they are finitely generated of known rank. We show that this
alone suffices to compute the Herbrand quotient; namely, from 9.9 we get the following
theorem of C. Chevalley:

Theorem 9.10 Let A be a finitely generated G-module, where G is a cyclic group of
prime order p: If α (resp. β) denotes the rank of the abelian group A (resp. AG), then
the Herbrand quotient h(A) is given by the formula

h(A) = p(p·β−α)/(p−1) .

61



Proof We can decompose A into its torsion group A0 and its torsion-free part A1 : A =
A0 ⊕ A1. If follows that AG = AG0 ⊕ AG1 . Since A is finitely generated, A0 is a finite
group, rank A1 = rank A = α and rank AG1 = rank AG = β. Thus

h(A)p−1 = h(A1)p−1 = q0,p(AG1 )p/q0,p(A1) ,

where q0,p(AG1 ) = (AG1 : pAG1 ) = pβ and q0,p(A1) = (A1 : pA1) = pα.
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10 The cup product

In the previous section we have seen that the restriction and corestriction maps are given
by canonical data in dimension q = 0, and induce corresponding maps on cohomology in
all dimensions. The same principle applies to the cup product, which in dimension 0 is
just the tensor product.

Let A and B be G-modules. Then A ⊗ B is a G-module, and the map (a, b) 7→ a ⊗ b
induces a canonical bilinear mapping

AG ×BG → (A⊗B)G ,

which maps NGA×NGB to NG(A⊗B). Hence it induces a bilinear mapping

H0(G,A)×H0(G,B)→ H0(G,A⊗B) by (a, b) 7→ a⊗ b .

We call the element a⊗ b ∈ H0(G,A ⊗ B) the cup product of a ∈ H0(G,A) and
b ∈ H0(G,B), and denote it by

a ∪ b = a⊗ b .

This cup product in dimension 0 extends to arbitrary dimensions:

Definition 10.1 There exists a uniquely determined family of bilinear mappings, the
cup product

∪ : Hp(G,A)×Hq(G,B)→ Hp+q(G,A⊗B), p, q ∈ Z ,

with the following properties:

(i) For p = q = 0 the cup product is given by

(a, b) 7→ a ∪ b = a⊗ b, a ∈ H0(G,A), b ∈ H0(G,B) .

(ii) If the sequences of G-modules

0→ A→ A′ → A′′ → 0
0→ A⊗B → A′ ⊗B → A′′ ⊗B → 0

are both exact, then the following diagram commutes

Hp(G,A′′)×

δ
��

Hq(G,B) ∪ //

1
��

Hp+q(G,A′′ ⊗B)

δ
��

Hp+1(G,A)×Hq(G,B) ∪ // Hp+q+1(G,A⊗B)

so that δ(a′′ ∪ b) = δa
′′ ∪ b, a′′ ∈ Hp(G,A′′), b ∈ Hq(G,B).
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(iii) If the sequences of G-modules

0→ B → B′ → B′′ → 0
0→ A⊗B → A⊗B′ → A⊗B′′ → 0

are both exact, then the following diagram commutes

Hp(G,A)×
1
��

Hq(G,B′′) ∪ //

δ
��

Hp+q(G,A⊗B′′)
(−1)pδ
��

Hp(G,A)×Hq+1(G,B) ∪ // Hp+q+1(G,A⊗B)

i.e., we have δ(a ∪ b′′) = (−1)p(a ∪ δb′′), a ∈ Hp(G,A), b′′ ∈ Hq(G,B′′).

The factor (−1)p in the last diagram is necessary and results from the anticommutativity
of the connecting homomorphism δ, see below. One cannot define a reasonable cup
product omitting this factor.

As with the general restriction maps, we obtain the general cup product from the case
p = 0, q = 0 by dimension shifting.

We recall that we identify the G-modules A⊗ B and B ⊗ A as well as the G-modules
(A⊗B)⊗C and A⊗ (B⊗C). This automatically leads to a corresponding identification
of the cohomology groups of these G-modules. In particular, we can write:

Ap ⊗B = JG ⊗ . . .⊗ JG ⊗ A⊗B = (A⊗B)p and

A⊗Bq = A⊗ JG ⊗ . . .⊗ JG ⊗B = JG ⊗ . . .⊗ JG ⊗ A⊗B = (A⊗B)q

for p, q ≤ 0, and analogously for p, q ≤ 0 with IG in place of JG. We will use this freely
below.

Because of Proposition 3.15 we may start with the case q = 0, p = 0 and determine the
cup product by the following commutative diagram:

(10.1.1) H0(G,Ap)×

δp

��

H0(G,Bq)
1
��

∪ // H0(G, (A⊗Bq)p)

δp

��

= H0(G,Ap ⊗Bq)

Hp(G,A)×
1
��

H0(G,Bq)
δq

��

∪ // Hp(G, (A⊗B)q)
(−1)p,qδq
��

= Hp(G,A⊗Bq)

Hp(G,A)× Hq(G,B) ∪ // Hp+q(G,A⊗B)

It follows immediately from the conditions (i), (ii) and (iii) that the cup product is
unique. We use this fact to give an explicit description of the cup product in terms of
cocycles in the special case (p, q) = (0, q) and (p, 0):
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Proposition 10.2 If we denote by ap (resp. bq) p-cocycles (resp. q-cocycles) of A (resp.
B), and by ap (resp. bq) their cohomology classes, then

a0 ∪ bq = a0 ⊗ bq and ap ∪ b0 = ap ⊗ b0 .

For the proof note that the products a0∪ bq and ap∪ b0 defined here satisfy the conditions
(i), (ii) and (iii) for (0, q) and (p, 0) respectively. This can be seen directly from the
behaviour of the cocycles under the corresponding maps. Now if we consider the lower
part of the diagram (10.1.1) for p = 0, resp. the upper part for q = 0, then we see that
the product defined by the commutative diagram (10.1.1) must coincide with the one
defined by 10.2.

Thus everything boils down to showing that the product maps defined by (10.1.1)

Hp(G,A)×Hq(G,B) ∪→ Hp+q(G,A⊗B)

satisfy the conditions (ii) and (iii). To this end, consider the exact sequences

0→ A→ A′ → A′′ → 0 ,
0→ A⊗B → A′ ⊗B → A′′ ⊗B → 0

and
0→ B → B′ → B′′ → 0 ,

0→ A⊗B → A⊗B′ → A⊗B′′ → 0 .
From these we get by 1.9 und 1.2 the exact sequences

0→ Aq → A′q → A′′q → 0
0→ (A⊗B)q → (A′ ⊗B)q → (A′′ ⊗B)q → 0

and
0→ Bp → B′p → B′′p → 0

0→ (A⊗B)p → (A⊗B′)p → (A⊗B′′)p → 0 ,
and we have the diagrams

Hp(G,A′′)×H0(G,Bq) ∪ //

(1,δq)

��

(δ,1)

++

Hp(G, (A′′ ⊗B)q)
δ

**
(−1)p·qδq

Hp+1(G,A)×H0(G,Bq) ∪ //

(1,δq)
��

Hp+1(G, (A⊗B)q)

(−1)(p+1)·qδq

��

Hp(G,A′′)×Hq(G,B) ∪ //

(δ,1)

++ ��

Hp+q(G,A′′ ⊗B)
δ

**
Hp+1(G,A)×Hq(G,B) ∪ // Hp+q+1(G,A⊗B)
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and

H0(G,Ap)×Hq(G,B′′) ∪ //

(δp,1)

��

(1,δ)

++

Hq(G, (A⊗B′′)p)
δ

**
δp

H0(G,Ap)×Hq+1(G,B) ∪ //

(δp,1)
��

Hq+1(G, (A⊗B)p)

δp

��

Hp(G,A)×Hq(G,B′′) ∪ //

(1,δ)

++ ��

Hp+q(G,A⊗B′′)
(−1)p·δ

**
Hp(G,A)×Hq+1(G,B) ∪ // Hp+q+1(G,A⊗B) .

Here the left sides in both diagrams commute for trivial reasons. The right sides are
composed from q (resp. p) squares as in 3.6, thus they commute as well. The front and
back sides commute by definition (10.1.1) of the cup product, and the upper squares
commute because 10.2 and the remarks following it. Since the vertical maps are bijective,
the commutativity of the upper squares implies the commutativity of the lower squares.
This completes the proof.

The axiomatic definition of the cup product in 10.1 does not give us an explicit description
of it, i.e., given two cohomology classes in terms of cocycles, we are for now not in a
position to decide which cocycle represents their cup product in general. Only for the
cases (p, q) = (0, q) and (p, 0) we have such a description by 10.2. The attempt to give an
explicit description of the cup product for general p, q (in particular for p < 0 and q < 0)
leads, however, to major computational problems. Thus we find ourselves in a situation
which is similar to that of the restriction map, which admits a very simple description in
dimensions q ≥ 0, but not for negative dimensions. Nevertheless in both cases we will
need explicit computations only in low dimensions; given these, one can manage knowing
the functorial properties of these maps.

Before giving explicit formulas for small dimension, we want to convince ourselves that
the cup product is compatible with the usual cohomological maps defined above.

Proposition 10.3 Let f : A→ A′ and g : B → B′ be two G-homomorphisms, and let
f ⊗ g : A⊗B → A′ ⊗B′ be the G-homomorphism induced by f and g. If a ∈ Hp(G,A)
and b ∈ Hq(G,B), then

f(a) ∪ g(b) = f ⊗ g(a ∪ b) ∈ Hp+q(G,A′ ⊗B′) .

This is completely trivial or p = q = 0, and follows in general from a simple dimension
shifting argument. We have demonstrated this technique already frequently enough to
leave the details to the reader.

Proposition 10.4 Let A,B beG-modules, and let g be a subgroup ofG. If a ∈ Hp(G,A)
and b ∈ Hq(G,B), then

res(a ∪ b) = res a ∪ res b ∈ Hp+q(g, A⊗B) ,
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and
cor(res a ∪ b) = a ∪ cor b ∈ Hp+q(G,A⊗B) .

This follows again from the case p = q = 0 by dimension shifting. In case p = q = 0
the first formula is immediate. For the second, let a ∈ AG and b ∈ Bg be 0-cocycles
representing a and b respectively. By definition 4.12 of the corestriction in dimension 0,
we have

cor(res a ∪ b) = cor(a⊗ b+Ng(A⊗B))
=

∑
σ∈G/g

σ(a⊗ b) +NG(A⊗B)

=
∑

σ∈G/g
a⊗ σb+NG(A⊗B)

= a⊗ (
∑

σ∈G/g
σb) +NG(A⊗B)

= a ∪ cor b .
We show that the cup product is anticommutative and associative:

Theorem 10.5 Let a ∈ Hp(G,A), b ∈ Hq(G,B), and c ∈ Hr(G,C). Then

a ∪ b = (−1)p·q(b ∪ a) ∈ Hp+q(G,B ⊗ A) ,

and
(a ∪ b) ∪ c = a ∪ (b ∪ c) ∈ Hp+q+r(G,A⊗ (B ⊗ C))

under the canonical isomorphisms Hp+q(G,A⊗B) ∼= Hp+q(G,B⊗A) and Hp+q+r(G, (A⊗
B)⊗ C) = Hp+q+r(G,A⊗ (B ⊗ C)).

Again, this is trivial for p = q = 0, and follows in general by dimension shifting.

We now want to compute some explicit formulas for the cup product. For this we denote
by ap (resp. bq) p-cocycles of A (resp. q-cocycles of B), and write ap (resp. bq) for their
cohomology classes in Hp(G,A) (resp. Hq(G,B)).

Lemma 10.6 We have a1 ∪ b−1 = x0 ∈ H0(G,A⊗B) with

x0 =
∑
τ∈G

a1(τ)⊗ τb−1

Proof By 3.14 we have the G-induced G-module A′ = Z[G]⊗A and the exact sequences

0→ A→ A′ → A′′ → 0 ,
0→ A⊗B → A′ ⊗B → A′′ ⊗B → 0 .

We think of A embedded in A′ and A⊗B embedded in A′⊗B; to simplify notation we do
not explicitly write out these homomorphisms. Because of the vanishing H1(G,A′) = 0,
there is a 0-cochain a′0 ∈ A′ with a1 = ∂a′0, so that

(10.6.1) a1(τ) = τa′0 − a′0 for all τ ∈ G .
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Let a′′0 ∈ A′′G be the image of a′0 in A′′. By definition of the connecting homomorphism
δ, we have a1 = δ(a′′0), and we obtain

a ∪ b−1 = δ(a′′0) ∪ b−1
(10.1)= δ(a′′0 ∪ b−1) (10.2)= δ(a′′0 ⊗ δb−1) = ∂(a′′0 ⊗ δb−1)

= NG(a′0 ⊗ b−1) =
∑
τ∈G

τa′0 ⊗ τb−1
(∗)=
∑
τ∈G

(a1(τ) + a′0)⊗ τb−1

=
∑
τ∈G

(a1(τ)⊗ τb−1) + a′0 ⊗NGb−1 =
∑
τ∈G

(a1(τ)⊗ τb−1)

because NGb−1 = 0.

In the following we restrict to the case B = Z and identify A⊗Z with A via a⊗n 7→ a ·n.
Recall that from 3.19 we have the canonical isomorphism

H−2(G,Z) ∼= Gab .

If σ ∈ G, let σ be the element in H−2(G,Z) corresponding to σ ·G′ ∈ Gab.

Lemma 10.7 a1 ∪ σ = a1(σ) ∈ H−1(G,A).

Proof From the exact sequence

0→ A⊗ IG → A⊗ Z[G]→ A→ 0

we obtain the isomorphism H−1(G,A) δ→ H0(G,A ⊗ IG). Thus it suffices to show
δ(a1 ∪ σ) = δ(a1(σ)). Using the definition of δ, we now compute

δ(a1(σ)) = x0 with x0 =
∑
τ∈G

τa1(σ)⊗ τ .

On the other hand, the proof of 3.19 shows that under the isomorphism H−2(G,Z) δ→
H−1(G, IG) the element σ goes to δσ = σ − 1, hence we have

δ(a1 ∪ σ) (10.1)= −(a1 ∪ δ(σ)) = −a1 ∪ (σ − 1) = y0 .

For the cocycle y0 we obtain from 10.6

y0 = −
∑
τ∈G

a1(τ)⊗ τ(σ − 1) =
∑
τ∈G

a1(τ)⊗ τ −
∑
τ∈G

a1(τ)⊗ τσ .

The 1-cocycle a1(τ) satisfies a1(τ) = a1(τσ)− τa1(σ). Substituting this into the last sum,
we find

y0 =
∑
τ∈G

τa1(σ)⊗ τσ .

Therefore y0 − x0 = ∑
τ∈G τa1(σ)⊗ τ(σ − 1) = NG(a1(σ)⊗ (σ − 1)), which shows that

x0 = y0.
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The following formula 10.8 is of particular interest for us. Note that if we take an element
a2 in the group H2(G,A), it provides us with the homomorphism

a2∪ : H−2(G,Z)→ H0(G,A) ,

which maps each σ ∈ H−2(G,Z) to the cup product a2 ∪ σ ∈ H0(G,A); we thus get a
canonical mapping from the abelianization Gab to the norm residue group AG/NGA. In
class field theory we will consider a special G-module A for which the homomorphism will
be shown to be bijective; in fact, the resulting canonical isomorphism Gab ∼= AG/NGA
is the main theorem of class field theory. For this the following proposition will be
important.

Proposition 10.8 We have a2 ∪ σ = ∑
τ∈G a2(τ, σ) ∈ H0(G,A).

Proof We consider again the G-module A′ = Z[G] ⊗ A and the exact sequence 0 →
A → A′ → A′′ → 0 (A′′ = JG ⊗ A). Since H2(G,A′) = 0 there is a 1-cochain a′1 ∈ A′1
with a2 = ∂a′1 i.e.,

(10.8.1) a2(τ, σ) = τa′1(σ)− a′1(τ · σ) + a′1(τ) .

The image a′′1 of a′1 is a 1-cocycle of A′′ such that a2 = δ(a′′1). Therefore

a2 ∪ σ = δ(a′′1) ∪ σ (10.1)= δ(a′′1 ∪ σ) (10.7)= δ(a′′1(σ)) = ∂(a′1(σ)) = ∑
τ∈G

τa′1(σ)
(10.8.1)= ∑

τ∈G
a2(τσ) + ∑

τ∈G
a′1(τ · σ)− ∑

τ∈G
a′1(τ) = ∑

τ∈G
a2(τ, σ) .
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11 The corestriction

Similar to restriction, we define corestriction using an axiomatic approach:

Definition 11.1 Let G be a finite group and let g be a subgroup of G. Then core-
striction is the uniquely determined family of homomorphisms

corq : Hq(g, A)→ Hq(G,A), q ∈ Z ,
with the properties:

(i) If q = 0, then
cor0 : H0(g, A)→ H0(G,A), a+NgA 7→ NG/ga+NGA (a ∈ Ag) .

(ii) For every exact sequence 0→ A→ B → C → 0 of G-modules and G-homomorphisms,
the following diagram is commutative

Hq(g, C) δ //

corq
��

Hq+1(g, A)
corq+1
��

Hq(G,C) δ // Hq+1(G,A) .
Exactly as for the restrictions, the homomorphisms corq arise from the corestriction cor0
in dimension 0 by dimension shifting:

From 3.15 we have the isomorphisms
δq : H0(G,Aq)→ Hq(G,A) and δq : H0(g, Aq)→ Hq(g, A) ,

and by (ii) the map corq is uniquely determined by the commutative diagram

H0(g, Aq) δq //

cor0
��

Hq(g, A)
corq
��

H0(G,Aq) δq // Hq(G,A) .
In particular, because of uniqueness and 4.11 we recover the homomorphism cor−1
introduced on p. 38. The fact that (ii) holds is verified in the same way as for restriction
using the following diagram, together with 4.11 and 3.6,

H−1(g, Cq+1) δ //

δq+1

��

cor

((

H0(g, Aq+1)
cor

((
(−1)q+1δq+1

H−1(G,Cq+1) δ //

δq+1
��

H0(G,Aq+1)

(−1)q+1δq+1

��

Hq(g, C) δ //

cor

(( ��

Hq+1(g, A)
cor

((
Hq(G,C) δ // Hq+1(G,A) .
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We remark that one can define the corestriction for negative dimensions very easily by a
canonical correspondence between cochains, analogously to the restrictions for positive
dimension. However, we will not pursue this further. In view of 4.10 we now want to
prove the following theorem

Theorem 11.2 Let g ⊆ G be a subgroup. The homomorphism

κ : gab → Gab

induced by the corestriction cor−2 : H−2(g,Z)→ H−2(G,Z) coincides with the canonical
homomorphism induced by σg′ 7→ σG′.

This follows, using the proof of 3.19, from the commutative diagram

H−2(g,Z) δ //

cor−2

��

H−1(g, Ig) = Ig/I
2
g

cor−1

��

gab
∼
logoo

κ

��
H−2(G,Z) δ // H−1(G, IG) = IG/I

2
G Gab .∼

logoo

The following relation between restriction and corestriction is important.

Theorem 11.3 Let g ⊆ G be a subgroup. Then the composition

Hq(G,A) res−→ Hq(g, A) cor−→ Hq(G,A)

is the endomorphism
cor ◦ res = (G : g) · id .

Proof Consider the case q = 0. If a = a+NGA ∈ H0(G,A), a ∈ AG, then cor0 ◦ res0(a) =
cor0(a+NgA) = NG/ga+NGA = (G : g) ·a+NGA = (G : g) ·a. The general case follows
from this by dimension shifting. In fact, the diagram

H0(G,Aq) cor0 ◦ res0 //

δq

��

H0(G,Aq)
δq
��

Hq(G,A) corq ◦ resq // Hq(G,A)

commutes and since the upper horizontal map is (G : g) · id, it follows that the same
holds for the lower horizontal map, i.e., corq ◦ resq = (G : g) · id.

Because the restriction and corestriction maps res and cor commute with the connecting
homomorphism δ, they also commute with maps induced by G-homomorphisms:
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Proposition 11.4 If f : A→ B is a G-homomorphism of the G-modules A,B, and g
is a subgroup of G, then the following diagram commutes

Hq(G,A) f //

res
��

Hq(G,B)
res
��

Hq(g, A)

cor
OO

f // Hq(g,B) .

cor
OO

This is clear in case of dimension q = 0, and the general case follows easily by dimension
shifting. In fact, the homomorphism f : A→ B induces a homomorphism f : Aq → Bq,
and in the following diagram

H0(G,Aq) f //

δq

��

res ''

H0(G,Bq)

res ''
δq

H0(g, Aq) f //

δq

cor
gg

��

H0(g,Bq)

δq

��

cor
gg

Hq(G,A) f //

res
'' ��

Hq(G,B)

res
''

Hq(g, A) f //

cor
gg

Hq(g,B) .

cor
gg

all vertical squares are commutative. Hence the commutativity of the lower diagram
follows from that of the upper one.

Since the cohomology groups Hq(G,A) are abelian torsion groups, they are direct sums of
their p-Sylow groups, i.e., the groups Hq(G,A)p of all elements in Hq(G,A) of p-power
order:

Hq(G,A) =
⊕
p

Hq(G,A)p .

The group Hq(G,A)p is often called the p-primary part of Hq(G,A). For the restriction
and corestriction maps on these p-primary parts we have the following:

Theorem 11.5 Let A be a G-module, and Gp a p-Sylow subgroup of G. Then the
restriction

res : Hq(G,A)p → Hq(Gp, A)

is injective, and the corestriction

cor : Hq(Gp, A)→ Hq(G,A)p

is surjective.
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Proof Since cor ◦ res = (G : Gp) · id, and since (G : Gp) and p are relatively prime,
the mapping Hq(G,A)pcor ◦ res// Hq(G,A)p is an automorphism. Hence if x ∈ Hq(G,A)p
and resx = 0, it follows immediately from cor ◦ resx = 0 that x = 0, which shows the
injectivity of res on Hq(G,A)p.

On the other hand, Hq(Gp, A) consists of elements whose order is a p-power (cf. 3.16),
so that corHq(Gp, A) ⊆ Hq(G,A)p. Since cor ◦ res is a bijection on Hq(G,A)p, this
inclusion is an equality.

We often encounter the problem that we want to show that certain cohomology groups
vanish. In many of these cases we will use the following consequence of Theorem 11.5,
which reduces this problem to the case of p-groups:

Corollary 11.6 If for every prime p the group Hq(Gp, A) = 0 for a p-Sylow subgroup
Gp of G, then we have Hq(G,A) = 0.

Proof Since res : Hq(G,A)p → Hq(Gp, A) is injective, the assumption implies that all
p-Sylow groups Hq(G,A)p are trivial; thus Hq(G,A) = 0.

We end this section with a generalization of the notion of a G-induced module: we will
use this type of G-modules in global class field theory.

Definition 11.7 Let G be a finite group, and let g be a subgroup of G. A G-module A
is called G/g-induced, if it has a representation

A =
⊕
σ∈G/g

σD ,

where D ⊆ A is a g-module and σ ranges over a system of left coset representatives of g
in G.

For g = {1} we obviously recover the G-induced modules from 3.9. As a generalization
of the cohomological triviality of G-induced modules, we have the following result, which
is often referred to as Shapiro’s Lemma:

Lemma 11.8 Let A = ⊕σ∈G/gσD be a G/g induced G-module. Then

Hq(G,A) ∼= Hq(g,D) ;

this isomorphism is given by the composition

Hq(G,A) res−→ Hq(g, A) π−→ Hq(g,D) ,

where π is induced by the natural projection A π−→ D.

We give a proof using dimension shifting. Let A = ⊕mi=1σiD, where σi ranges over a
system of left coset representatives of G/g, in particular let σ1 = 1 For q = 0 we define a
map in the opposite direction of the homomorphism

AG/NGA
res−→ Ag/NgA

π−→ Dg/NgD
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by ν : Dg/NgD → AG/NGA, ν(d + NgD) = ∑m
i=1 σid + NGA. It is easy to verify that

(π ◦ res) ◦ ν = id and ν ◦ (π ◦ res) = id. Therefore π ◦ res is bijective.

In case of arbitrary dimension q we now set

Aq = JG ⊗ · · · ⊗ JG ⊗ A Aq = IG ⊗ · · · ⊗ IG ⊗ A
Dq
∗ = JG ⊗ · · · ⊗ JG ⊗D resp. Dq

∗ = IG ⊗ · · · ⊗ IG ⊗D
Dq = Jg ⊗ · · · ⊗ Jg ⊗D Dq = Ig ⊗ · · · ⊗ Ig ⊗D

depending on wether q ≥ 0 or q ≤ 0. Because A = ⊕mi=1σiD we have

JG = Jg ⊕K1 resp. IG = Ig ⊕K−1

with the g-induced modules

K1 =
⊕
τ∈G

τ

(
m∑
i=2
Z · σ−1

i

)
and K−1 =

⊕
τ∈G

τ

(
m∑
i=2
Z · (σ−1

i − 1)
)
.

With 1.5 and 3.10 we obtain for all q the canonical g-module decomposition

Dq
∗ = Dq ⊕ Cq

for some g-induced g module Cq. Using 3.15, we then obtain the diagram

H0(G,Aq) res //

o δq
��

H0(g, Aq) π∗ //

o δq
��

H0(g,Dq
∗)

ρ // H0(g,Dq)
o δq
��

Hq(G,A) res // Hq(g, A) π // Hq(g,D) ,

in which the map π∗ ◦ res in the upper row in dimension 0 is bijective, and the following
map ρ is bijective because of 3.7 and 3.13. Since the composite Aq π∗−→ Dq

∗
ρ−→ Dq

is induced by the projection A π−→ D, we see that this diagram commutes. Thus the
bijectivity of the upper map ρ ◦ π∗ ◦ res implies the bijectivity of the lower map π ◦ res.
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12 Local class field theory I

Let K be a local field of characteristic zero. For any normal extension L/K we let

Hq(L/K) := Hq(GL/K , L
×)

and let
Br(K) = lim−→

L/K

normal

H2(GL/K , L
×)

be the so-called Brauer group ofK. Note that for L2/L1/K we have canonical injections

Br(K) ↪→ Br(L1) ↪→ Br(L2) .

Theorem 12.1 (So-called second fundamental inequality) For every normal extension
L/K the cardinality |H2(L/K,L×)| of H2(L/K,L×) divides [L : K].

12.2 Recall the following notations: If K is a p-adic local field, then we have

OK = {x ∈ K | v(x) ≤ 0} the valuation ring.

p = {x ∈ K | v(x) > 0} the maximal ideal in OK .

K = OK/p the residue field of K.

U = O r p the unit group.

U1 = 1 + p the group of principal units.

Un = 1 + pn the higher unit groups.

Let q be the cardinality of K (If f is the degree of K over Fp, then q = pf )

We have a direct composition
K× = U × 〈π〉 ,

where 〈π〉 is the infinite cyclic group generated by a prime element π.

One easily sees:

Proposition 12.3 U/U1 ∼= K
×, and Un/Un+1 ∼= K

+ for n ≥ 1.

Proof of Theorem 12.1 First we consider the case where L/K is cyclic of prime degree
p = [L : K], and we show that the Herbrand quotient

h(L×) = |H2(L/K), L×| / |H1(L/K,L×)|

is equal to p = [L : K].
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In fact the formula 9.9 gives

h(L×)p−1 = q0,p(K×)p/q0,p(L×) ,

where q0, p is formed with the endomorphisms 0 and p.

Now we have

Lemma 12.4 The group (K×)m has finite index in K×. In fact

(K× : (K×)m) = m · qv(m) · |µm(K)| = m · |m|−1
p · |µm(K)| ,

where |µm(K)| is the number of m-th roots of unity in K and q is the cardinality of the
residue field K of K.

For the proof we use the Herbrand quotient q0,m formed by the endomorphisms 0 and m.
Then, by (9.4.2) we have

(K× : (K×)m) = q0,m(K×) · |µm(K)| .

From the multiplicativity of q0,m we further obtain

q0,m(K×) = q0,m(K×/U) · q0,m(U/Un) · q0,m(Un) .

Here we have q0,m(K×/U) = q0,m(Z) = m since K× = U × (π), q0,m(U/Un) = 1 since
U/Un is finite, and q0,m(Un) = (Un : Un+v(m)) = qv(m) by the following Lemma for
sufficiently big n, and the fact that (U i : U i+1) = q.

Lemma 12.5 If m is a positive integer, then the map x 7→ xm yields an isomorphism

Un → Un+v(m)

for sufficiently large n.

Proof If π is a prime element of p and x = 1 + aπn ∈ Un, then

xm = 1 +m · aπn +
(
m
2

)
a2π2n + . . . ≡ 1 mod pn+v(m)

and therefore xm ∈ Un+v(m) for sufficiently large n.

To prove that the map is surjective we have to show that for every a ∈ O there exists an
element x ∈ O such that

1 + a · πn+v(m) = (1 + xπn)m ,

i.e., 1 + aπn+v(m) = 1 +mπnx+ π2n · f(x), where f(x) is an integral polynomial in X. If
we set m = uπv(m), u ∈ U , we get an equation

−a+ u · x+ πn−v(m) · f(x) = 0
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If n > v(m), Hensel’s Lemma gives a solution x ∈ O.

We now conclude as follows. By Theorem 9.9 we have

h(L×)p−1 = q0,p(K×)p/q0,p(L×) .

Using Lemma 12.4 we get

q0,p(K×) = (K× : (K×)p)/|µp(K)|
= p · qUK(p)

k

q0,p(L×) = (L× : (L×)p)/|µp(L)|
= p · qUL(p)

L

If f = [L : K] is the inertia degree and e is the ramification index, then p = e · f , qL = qfK
and vL(p) = evK(p).

Substitution in the above formula yields

h(L×)p−1 = pp · qpUK(p)
K /pq

e·f ·UK(p)
K = pp−1 ,

i.e. h(L×) = p.

The general case follows from this by purely cohomological methods. Since the Galois
group GL/K is solvable (see below), there exists a cyclic intermediate field K ′ over K of
prime degree K ⊂ K ′ ⊂ L. Since H1(L/K ′) = 1, the sequence

1→ H2(K ′/K) Inf−→ H2(L/K) Res−→ H2(L/K ′)

is exact (see Theorem 7.5).

This shows that
|H2(L/K)|/|H2(L/K ′)| · |H2(K ′/K)| .

We have already shown that |H2(K ′/K)| = [K ′ : K], and when we assume by induction
on the field degree that |H2(L/K)|/[L : K], then it follows that

|H2(L/K)|/[L : K ′] · [K ′ : K] = [L : K] .

The above proof makes use of the solvability of local Galois groups, which follows
immediately from the fact that between K and L one has the cyclic inertia field K ′/K,
and above K ′ the tamely ramified cyclic extension K ′′ which is the ramification field,
over which L has p-power degree.

Now we discuss a special case of local class field theory, the unramified class field theory.

An extension L/K of local fields is unramified, if a prime element π in K is also a prime
element in L. This is equivalent to the statement that the degree [L : K] is equal to the
degree [L : K] of the residue fields.
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An unramified extension L/K is normal, and there is a canonical isomorphism

GL/K
∼−→ GL/K ,

sending σ ∈ GL/K to the map σ : L→ L with σ(a) = σa = σa mod p.

Recall also that the Frobenius automorphism ϕL/K ∈ GL/K is the preimage of the
morphism ϕ : L→ L, a 7→ aq, where q is the cardinality of K.

The following result is particularly important both in local and global class field theory.

Theorem 12.6 Let L/K be an unramified extension. Then for the group of units UL
one has

Hq(GL/K , UL) = 1 for all q .

Proof If we identify GL/K with GL/K , then

1→ U1
L → UL → L

× → 1

is an exact sequence of GL/K-modules. Since Hq(GL/K , L
×) = 1 by Hilbert’s Theorem

90, it follows that Hq(GL/K , UL) ∼= Hq(GL/K , U
1
L).

A prime element π ∈ K for pK is also a prime element of pL, Thus the map

Un−1
L → L

+
, 1 + aπn−1 7→ a mod PL

(for a ∈ OL) defines a GL/K-homomorphism, and from the exact sequence of GL/K-
modules

1→ Un
L → Un−1

L → L
+ → 0

we obtain, using that Hq(GL/K , L
+) = 0 for all q (note that GL/K

∼= GL/K , the isomor-
phism

Hq(GL/K , U
n
L) ∼= Hq(GL/K , U

n−1
L ) .

This implies that the injection Un
L → UL induces an isomorphism

Hq(GL/K , U
n
L)→ Hq(GL/K , UL) .

If m is a positive integer, the map x 7→ xm defined an isomorphism Un
L → U

n+v(m)
L ,

provided n is sufficiently large (see 12.2).

Hence we have a homomorphism

Hq(GL/K , UL) m−→ Hq(GL/K , UL) ,

and an isomorphism

Hq(GL/K , U
n
L) m−→ Hq(GL/K , U

m+v(m)
L ) .
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Consider the diagram

Hq(GL/K , U
n
L) //

m

��

Hq(GL/K , UL)

m

��
Hq(GL/K , U

n+v(m)
L ) // Hq(GL/K , UL)

This diagram commutes, and all maps except for the right vertical map are known to be
bijections. Hence is follows that the map

Hq(GL/K , UL) m−→ Hq(GL/K , UL)

that sends a cohomology class c to its m-th power cm is a bijection, too, for all m.
But the elements of Hq(GL/K , UL) have finite order (see 5.17), so that we must have
Hq(GL/K , UL) = 1.

For q = 0 we obtain
UK = NL/KUL .
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13 Three Theorems of Tate

In this chapter we present three important Theorems by Tate.

Theorem 13.1 (Theorem of Cohomological Triviality) Let G be a finite group, and let
A be a G-module. If there is a dimension q0 such that

Hq0(g, A) = Hq0+1(g, A) = 0

for all subgroups g ⊆ G, then A has trivial cohomology, i.e., Hq(g, A) = 0 for all
subgroups g ⊆ G and all q ∈ Z.

Proof We will reduce the general case to the case of cyclic groups, where the result is an
immediate consequence of Theorem 9.1. It is clear that it suffices to show the following
claim:

If Hq0(g, A) = Hq0+1(g, A) = 0 for all subgroups g ≤ G, then Hq0−1(g, A) = 0 =
Hq0+2(g, A).

Moreover, by dimension shifting, it suffices to consider the case q0 = 1. Hence assume
that H1(g, A) = 0 = H2(g, A) for all subgroups g ⊆ G. We have to show that

(∗) H0(g, A) = 0 = H3(g, A)

for all subgroups g ⊂ G.

We prove this by induction on the order |G| of G; the case |G| = 1 being trivial.

Hence we may assume that (∗) holds for all proper subgroups g ofG, and it remains to show
that H0(G,A) = 0 = H3(G,A). This is clear if G is not a p-group, because then all Sylow
groups are proper subgroups, and Corollary 11.6 shows that H0(G,A) = H3(G,A) = 0.

Therefore we may assume that G is a p-group. Then there exists a normal subgroup
H E G such that G/H is cyclic of order p. By the induction assumption we have

H0 = (H,A) = H1(H,A) = H2(H,A) = H3(H,A) = 0 ,

and using exercise 1 on sheet 4 as well as Theorem 7.5, we obtain the isomorphisms

Inf : Hq(G/H,AH) ∼−→ Hq(G,A)

for q = 1, 2, 3.

Now H1(G,A) = 0 implies H1(G/H,AH) = 0 hence H3(G/H,AH) = 0 by Theorem 9.1,
and so H3(G,A) = 0.

Furthermore, H2(G,A) = 0 implies H2(G/H,AH) = 0, hence H0(G/H,AH) = 0 (by
Theorem 9.1). This means AG = NG/HA

H = NG/H(NHA) = NGA, where we have
used that H0(H,A) = 0, so that AH = NHA. Hence H0(G,A) = 0, which proves the
Theorem.

From the Theorem of cohomological triviality we obtain the following result of Tate:
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Theorem 13.2 Let A be a G-module with the following properties: For every subgroup
g ⊆ G we have

I H−1(g, A) = 0

II H0(g, A) is a cyclic group of order |g|.

If a generates the group H0(G,A), then the cup product map

au : Hq(G,Z)→ Hq(G,A)

is an isomorphism for all q ∈ Z.

Proof The module A itself is not suitable for the proof, since we need to use the
injectivity of the map Z → A, n 7→ na0 (where a = a0 + NGA). Hence we replace A
with

B = A⊕ Z[G]

which we can do without changing the cohomology groups.

In fact, if i : A→ B is the canonical injection onto the first component of B, then the
induced map

ĩ : Hq(g, A)→ Hq(g,B)

is an isomorphism, because Z[G] is cohomologically trivial.

Now choose an a0 ∈ AG such that a = a0 +NGA is a generator of H0(G,A). Then the
map

f : Z→ B, n 7→ n · a0 + n ·NG

is injective, because of the second term n ·NG, and induces the homomorphism

f : Hq(g,Z)→ Hq(g,B) .

Using Proposition 10.2, we see that the diagram

Hq(G,Z) au //

f &&

Hq(G,A)

i
��

Hq(G,B)

commutes; thus it suffices to show f is bijective.

This follows easily from Theorem 13.1: Since f : Z→ B is injective, there is an exact
sequence of G-modules

(13.1.1) 0→ Z→ B → C → 0
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Now H−1(g,B) = H−1(g, A) = 0 and H1(g,Z) = 0 for all g ⊆ G, which implies that the
exact cohomology sequence for (13.1.1) has the form

0→ H−1(g, C)→ H0(g,Z) f−→ H0(g,B)→ H0(g, C)→ 0 .
If q = 0, then f is clearly an isomorphism, hence H−1(g, C) = H0(g, C) = 0. Then
by Theorem 13.1 we get Hq(g, C) = 0 for all q. Hence it follows that f : Hq(G,Z) →
Hq(G,B) is bijective for all q, as claimed.

From Theorem 13.2 we obtain the following, very important result, again due to Tate

Theorem 13.3 Assume A is a G-module with the following properties. For each
subgroup g ⊆ G we have

I H1(g, A) = 0

II H2(g, A) is cyclic of order |g|.

If a generates the group H2(G,A), then the map
a∪ : Hq(G,Z)→ Hq+2(G,A)

is an isomorphism.

Addendum: If a generates the group H2(G,A), then res a generates H2(g, A).

Proof Consider the dimension shift isomorphism
δ2 : Hq(g, A2)→ Hq+2(g, A) .

The assumptions I. and II. imply that H−1(g, A2) = 0, and that H0(g, A2) is cyclic
of order |g|. Furthermore, the generator a ∈ H2(G,A) is the image of the generator
δ−2a ∈ H0(G,A2).

It follows from 10.1 that the diagram

Hq(G,Z) (δ−2)au //

id

��

Hq(G,A2)

δ2

��
Hq(G,Z) au // Hq+2(G,A)

commutes. Since (δ−2a)u is bijective by Theorem 3.1 the map au is bijective as well.

Addendum: Since (cor ◦ res)a = (G : g) · a, the order of the element res a ∈ H2(g, A) is
divisible by |g|, hence res a generates H2(g, A) by II.

For the class field theory, the case q = −2 is particularly important. In this case Tate’s
Theorem yields a canonical isomorphism between

Gab ∼= H−2(G,Z) and AG/NGA = H0(G,A)
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14 Abstract class field theory

Definition 14.1 If G is a profinite group and A is a discrete G-module, the pair (G,A)
is called a formation.

Let {GK | K ∈ X} be the family of open subgroups of G, and write AK = AGK (the
fixed module under GK). Note that AK ⊂ AL if GL ⊂ GK .

If GL is a normal subgroup in GK , then AL is a GL/K-module, and we write

Hq(L/K) = Hq(GL/K , AL) .

If N ⊇ L ⊇ K is a tower of normal extensions, we have inclusions GN ⊆ GL ⊆ GK , with
GN and GL normal in GK , and we obtain inflations

Hq(GL/K , AL) = Hq(GL/K , A
GN/L
N ) Inf−→ Hq(GN/K , AN) ,

where we write GL/K for GK/GL, i.e.,

Hq(L/K) InfN−→ Hq(N/K)

for q ≥ 1. In addition, we also have restriction and corestriction maps

Hq(GN/K , AN) res−→ Hq(GN/L, AN)

Hq(GN/L, AN) cor−→ Hq(GN/K , AN) ,

i.e.,

Hq(N/K) res−→ Hq(N/L) and Hq(N/L) cor−→ Hq(N/K).

Here we only need to assume that N/K is normal.

If both N and L are normal, then the sequence

1→ Hq(L/K) infN−→ Hq(N/K) resL−→ Hq(N/L)

is exact for q = 1, and exact for q > 1, if H i(N/L) = 0 for i = 1, . . . , q − 1 (see Theorem
7.5).

We call a formation (G,A) a field formation, if for every normal extension L/K we
have

H1(L/K) = 0 .

In a field formation, the sequence

0→ H2(L/K) infN−→ H2(N/K) resL−→ H2(N/L)

is always exact for N ⊇ L ⊇ K.
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In particular, if N ⊇ L ⊇ K are normal extensions, then we can always regard H2(L/K)
as embedded in H2(N/K), since the inflation

H2(L/K) InfN−→ H2(N/K)

is injective.

If L ranges over all normal extensions of K, then the groups H2(L/K) form a direct
system of groups with respect to the inflation maps, and taking the inductive limit

H2( /K) = lim−→
L

H2(L/K)

we obtain a groupH2( /K) in which all groupsH2(L/K) are embedded. For N ⊇ L ⊇ K
as above we have

H2(L/K) ⊆ H2(N/K) ⊆ H2( /K) .
We will regard all maps here as inclusions.

Given any extension K ′ of K, we obtain a canonical homomorphism

(14.1.1) H2( /K) resK′−→ H2( /K ′) .

In fact, if c ∈ H2( /K), then there is an extension L ⊇ K ′ ⊃ K such that c is contained
in the group H2(L/K); hence the restriction map

(∗) H2(L/K) resK′−→ H2(L/K ′)

defines an element
resK′(c) ∈ H2(L/K ′) ⊆ H2( /K) ,

This map can easily be seen to be independent of the choice of the field L ⊇ K ′

The restriction of (∗) to H2(L/K) gives back the usual restriction map

H2(L/K)→ H2(L/K ′) .

From this we obtain:

Proposition 14.2 Let (G,A) be a field formation. If K ′/K is normal, then

1→ H2(K ′/K) Inf
↪→ H2( /K) Res−→ H2( /K ′)

is exact.

The fundamental assertion in both local and global class field theory is the existence of a
canonical isomorphism, the so-called “reciprocity map”

(14.2.1) Gab
L/K
∼= AK/NL/KAL
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for every normal extension L/K, where GL/Kab is the abelianization of GL/K , and
NL/KAL = NGL/KAL is the norm group of AL.

By Tate’s Theorem 13.3 we can force the existence of such an isomorphism by postulating:
If L/K is any extension, then

I. H1(L/K) = 1

II. H2(L/K) is cyclic of order [L : K].

Then the cup product with some generators a of H2(L/K) gives an isomorphism as in
(14.2.1).

However the choice of a is not canonical. In order to get some canonical choice, we
replace II by the condition that there is an isomorphism between H2(L/K) and the cyclic
group 1

[L:K]Z/Z, the so-called “invariant map” which uniquely determines the element
uL/K ∈ H2(L/K) with image 1

[L:K]Z/Z.

The crucial point here is that this element remains “correct” when passing to extension
fields and subfields, which we assume by imposing certain compatibility conditions on
the invariant maps.

This leads to the following:

Definition 14.3 A formation (G,A) is called a class formation if it satisfies the
following axioms:

I H1(L/K) = 0 for every normal extension (field formation)

II For every normal extension there is an isomorphism

invL/K : H2(L/K) ∼−→ 1
[L : K]Z/Z ,

the invariant map, with the following properties:

(a) If N ⊃ L ⊃ K is a tower of normal extensions, then

invL/K = invN/K |H2(L/K) .

(b) If N ⊃ L ⊃ K is a tower with N/K normal, then

invN/L ◦ res L = [L : K] · invN/K .
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Remark 14.4 II b) becomes almost obvious, if one replaces it by the commutative
diagram

(14.4.1) H2(N/K)
invL/K //

resL
��

1
[N :K]Z/Z

·[L:K]
��

H2(L/K)
invL/K // 1

[N :L]Z/Z

The extension property II a) of the invariant implies that for H2( /K)⋃
L
H2(L/K) there

is an injective homomorphism

invK : H2( /K)→ Q/Z .

By II b) we get the following for this map: If L/K is an arbitrary extension of K, then

invL ◦ res L = [L : K] · invK ,

where resL : H2( /K)→ H2( /K) is the canonical map (see (14.1.1)).

Conversely, from the above formula we recover II b), since invN/L (resp. invN/K) is the
restriction of invL (resp invK) to H2(N/L) (resp. H2(N/K)).

Taken together with the formulas of Axiom II, we obtain the following formulae:

Proposition 14.5 Let N ⊇ L ⊇ K be extensions with N/K normal. Then

a) invN/K c = invL/K c if L/K is normal and c ∈ H2(L/K) ⊆ H2(N/K).

b) invN/L(resL c) = [L : K] · invN/K c if c ∈ H2(N/K)

c) invN/K(corK c) = invN/L c for c ∈ H2(N/L).

Proof a) and b) are just restatements of the formulae in Axiom II.

c): The commutative diagram (14.4.1) immediately implies that the map H2(N/K) ResL−→
H2(N/L) is surjective. Hence for every c ∈ H2(N/L) we have c = ResL c̃ for some
c̃ ∈ H2(N/K), and hence corK(c) = cor(K)(resL c̃) = c̃[L:K] (see 11.3). Hence, by b),
invN/K(corK c) = [L : K] · invN/K(c̃) = invN/L(res c̃) = invN/L(c).

Now we can distinguish a “canonical” element in each group H2(L/K).

Definition 14.6 Let L/K be a normal extension. The unique element uL/K ∈ H2(L/K)
such that

invL(uL/K) = 1
[L : K] + Z

is called the fundamental class of L/K.
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From the properties of the invariant maps we obtain

Proposition 14.7 Let N ⊇ L ⊇ K be extensions with N/K normal. Then

a) uL/K = (uN/K)[N :L], if L/K is normal.

b) resL(uN/K) = uN/L

c) corK(uN/L = (uN/K)[L:K]

Proof Since two cohomology classes are equal if they have the same invariants, the
claim follows from:

a) invN/K((uN/L)[N :L]) = [N : L] invN/K(uN/K)

= [N :L]
[N :K] + Z = 1

[L:K] + Z

b) invN/L(resL(uL/K = [L : K] · invN/K(uN/K)))

= [L:K]
[N :K] + Z = 1

[N :L] + Z

c) invN/K(corK(uN/L)) = invN/L(uN/L) = 1
[N :L] + Z

= [L:K]
[N :K] + Z

= [L : K] · invN/K(uN/K)

= invN/K((uN/K)[L:K]) .
Now we apply Tate’s Theorem 3.3 and get:

Main Theorem 14.8 Let L/K be a normal extension. Then the map

uL/K∪ : Hq(GL/K ,Z)→ Hq+2(L/K) ,

given by the cup product with the fundamental class uL/K ∈ H2(L/K), is an isomorphism
in all dimensions q.

For q = 1, 2 we immediately get:

Corollary 14.9 H3(L/K) = 0 and H4(L/K) = χ(GL/K).

Proof We have H3(L/K) ∼= H1(GL/K ,Z) = Hom(GL/K ,Z) = 0 and H4(L/K) ∼=
H2(GL/K ,Z) ∼= H1(GL/K ,Q/Z) = Hom(GL/K ,Q/Z) =: χ(GL/K).
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Corollary 14.10 For q = −2 we get

H−2(GL/K ,Z) ∼= Gab
L/K and H0(L/K) = AGL/K/NL/KA

so that we get an isomorphism

ΘL/K : AGL/K/NL/KA
∼→ Gab

L/K .

This isomorphism is called the Nakayama map.

Using Proposition 10.8, we can give an explicit description of this map as follows:

If u is a 2-cocycle representing the fundamental class uL/K , then we have

ΘL/K(σG′L/K) =
 ∏
τ∈GL/K

u(τ, σ)
 ·NL/KAL

for all σG′L/K ∈ Gab
L/K = GL/K/G

′
L/K .

Despite this description, it turns out that the inverse of ΘL/K ,

(14.10.1) AK/NL/KAL → Gab
L/K ,

which is also called the reciprocity isomorphism, is often more accessible and more
important. It induces a homomorphism from AK onto Gab

L/K . This homomorphism,
( , L/K) is called the norm residue symbol. Hence we have an exact sequence

1→ NL/KAL → AK
( ,L/K)−→ Gab

L/K → 1 ,

and an element a ∈ AK is a norm if and only if (a, L/K) = 1.

We note the following relation between the norm residue symbol ( , L/K) and the
invariant map invL/K , which will be useful later:

Lemma 14.11 Let L/K be a normal extension, let a ∈ AK , and a = aNL/KAL ∈
H0(L/K). If χ ∈ χ(Gab

L/K) = H1(GL/K ,Q/Z) is a character, then

χ((a, L/K)) = invL/K(a ∪ δχ) ∈ 1
[L : K]Z/Z ,

where δχ denotes the image of χ under the isomorphism

H1(GL/K ,Q/Z) δ−→ H2(GL/K ,Z)

which is induced from the exact sequence

0→ Z→ Q→ Q/Z→ 0

and the fact that Hq(GL/K ,Q) = 0 for the finite group GL/K .
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Proof Let σa = (a, L/K) ∈ Gab
L/K

∼= H−2(GL/K ,Z), and let σa be the element in
H−2(GL/K ,Z) associated to σa.

By definition of the norm residue symbol, we have

a = uL/K ∪ σa ∈ H0(GL/K , AL) .

Since the cup product is associative and commutes with the δ-map, we obtain

a ∪ δχ = (uL/K ∪ σa) ∪ δχ = uL/K ∪ (σa ∪ δχ)
= uL/K ∪ δ(σa ∪ χ) .

By Lemma 10.7 we further have

σa ∪ χ = χ(σa) = r

n
+ Z ∈ 1

n
Z/Z = H−1(GL/K ,Q/Z) ,

where n = [L : K]. Hence, taking

δ : H−1(GL/K ,Q/Z)→ H0(GL/K ,Z)

gives
δ(χ(σa)) = n( r

n
+ Z) = r + nZ ∈ H0(GL/K ,Z) = Z/nZ ,

and therefore
a ∪ δχ = uL/K ∪ (r + nZ) = urL/K .

From this we get

invL/K(a ∪ δχ) = r · invL/K = r

n
+ Z = χ(σa) = χ((a, L/K)) .

The behaviour of the invariant map under inflation (=inclusion) and restriction map
in Axiom II already determines how the norm residue symbol behaves when passing to
extensions and subfields:

Theorem 14.12 Let N ⊃ L ⊃ K be a tower of extensions with N/K normal. Then
the following diagrams are commutative

a)

AK
( ,N/K) //

id
��

Gab
N/K

π

��
AK

( ,L/K) // Gab
L/K

where π is the canonical projection,
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b)

AL
( ,N/L) // Gab

N/L

AK
( ,N/K) //

?�

incl

OO

Gab
N/K ,

Ver

OO

where the so-called Verlagerung Ver is induced by H−2(GN/K ,Z) Res−→ H−2(GN/L,Z),

c)

AL
( ,N/L) //

NL/K

��

Gab
N/L

κ

��
AK

( ,N/K) // Gab
N/K

where NL/K is the norm and κ is the canonical homomorphism induced by GN/L → GN/K ,

d)

AK
( ,N/K) //

σ

��

Gab
N/K

σ

��
AσK // Gab

σN/σK

where, for σ ∈ G, the maps AK σ−→ AσK and Gab
N/K

σ−→ Gab
σN/σK are a 7→ σa and

τ 7→ στσ−1, respectively.

All statements essentially follow from the formulas in Proposition 14.7.

We end this section by a discussion of the so-called norm groups.

Definition 14.13 A subgroup I of AK is called a norm group, if there is an extension
AL of AK such that I = NL/KAL.

Lemma 14.14 Let L/K be a normal extension, and let Lab be he maximal abelian
extension contained in L. Then

NN/LAL = NLab/KALab ⊆ AK .

Proof The inclusion NL/KAL ⊆ NLab/KALab follows from the multiplicativity of the
norm. The reciprocity law gives the isomorphism

AK/NL/KAL ∼= Gab
L/K = GLab/K

∼= AK/NLab/KALab ,

and (AK : NL/KAL) = (AK : NLab/KALab) < ∞ implies that we have the equality
NL/KAL = NLab/KALab .
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15 Local class field theory II

Now we discuss a special case of local class field theory, the unramified class field theory.

An extension L/K of local fields is unramified, if a prime element π in K is also a prime
element in L. This is equivalent to the statement that the degree [L : K] is equal to the
degree [L : K] of the residue fields.

An unramified extension L/K is normal, and there is a canonical isomorphism

GL/K
∼−→ GL/K ,

sending σ ∈ GL/K to the map σ : L→ L with σ(a) = σa = σa mod p.

Definition 15.1 The Frobenius automorphism ϕL/K ∈ GL/K is the preimage of the
morphism ϕ : L→ L, a 7→ aq, where q is the cardinality of K.

From this we get

Proposition 15.2 Let N ⊇ L ⊇ K be unramified extensions of K. Then

ϕL/K = ϕN/K|L = ϕN/KGN/L ∈ GN/L and ϕN/L = ϕ
[L:K]
N/K .

Proof This follows easily from the fact that for all x ∈ OL we have

(ϕL/Kx) mod PL = xqk mod PL = xqK mod PN = (ϕN/Kx) mod PN ,

and for all x ∈ ON we have

(ϕN/Lx) mod PN = xqL mod PN = xqK [L:K] mod PN = ϕ
[L:K]
N/K x mod PN .

By Theorem 12.4 we have Hq(GL/K , UL) = 1 for all q. In particular, if L/K is unramified,
then

UK = NL/KUL .

Hence every unit in K is a norm.

We show now that the unramified extensions form a class formation with respect to
the multiplicative group L×. To do this, we have to specify an invariant map satisfying
Axiom II in 14.3 We proceed as follows. From the long exact cohomology sequence
associated with the exact sequence

1→ UL → L×
vL−→ Z→ 0

we obtain, using Hq(GL/K , UL) = 1, the isomorphism

H2(GL/K , L
×) v−→ H2(GL/K ,Z) .
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Moreover, the exact sequence

0→ Z→ Q→ Q/Z→ 0 ,

and the fact that Q is cohomologically trivial, implies that the connecting map

H2(GL/K ,Z) δ−1
−→ H1(GL/K ,Q/Z) = Hom(GL/K ,Q/Z) = χ(GL/K)

is an isomorphism. If χ ∈ χ(GL/K), then χ(ϕL/K) ∈ 1
[L:K]Z/Z ⊆ Q/Z, and since the

Frobenius automorphism ϕL/K generates the group GL/K , the map

H1(GL/K ,Q/Z) = χ(GL/K) ϕ−→ 1
[L : K]Z/Z

is an isomorphism, too. Taking the composition of these three isomorphisms

H2(GL/K , L
×) v−→ H2(GL/K ,Z) δ−1

−→ H1(GL/K ,Q/Z) ϕ−→ 1
[L : K]Z/Z ,

we obtain the desired map:

Definition 15.3 If L/K is an unramified extension, define

invL/K : H2(GL/K , L
×)→ 1

[L : K]Z/Z

to be the isomorphism invL/K = ϕ ◦ δ−1 ◦ v.

For simplicity we let Hq(L/K) := Hq(GL/K , L
×).

Theorem 15.4 The formation (GT/K , T
×) is a class formation with respect to the

invariant map of 15.1.

Proof Axiom I is always satisfied by the Theorem of Hilbert-Noether: H1(L/K) = 1.

For the proof of Axiom II a) and b) we need to prove that the following two diagrams
commute

H2(L/K) v //

incl=inf
��

H2(GL/K ,Z) δ−1
//

inf
��

H1(GL/K ,Q/Z) ϕ //

inf
��

1
[L:K]Z/Z� _

incl
��

H2(N/K) v // H2(GN/K ,Z) δ−1
// H1(GN/K ,Q/Z) ϕ // 1

[N :K]Z/Z

H2(N/K) v //

res
��

H2(GN/K ,Z) δ−1
//

res
��

H1(GN/K ,Q/Z) ϕ //

res
��

1
[N :K]Z/Z

·[L:K]
��

H2(N/L) v // H2(GN/L,Z) δ−1
// H1(GN/L,Q/Z) ϕ // 1

[N :L]Z/Z
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where N ⊇ L ⊇ K are two unramified extensions of K.

But the commuting of the two left squares follows from the functoriality of inf and
res, and the middle diagrams are commutative, because Inf and Res commute with the
connecting morphism δ.

To prove the commutativity of the right squares, let χ1 ∈ H1(GL/K ,Q/Z) and χ2 ∈
H1(GN/K ,Q/Z).

From 15.2 we have the formulas

inf χ(ϕN/K) = χ(ϕN/KGN/L) = χ(ϕL/K) , and
resχ(ϕN/L) = χ(ϕN/L) = χ(ϕ[L:K]

N/K ) = [L : K]χ(ϕN/K) .

which completes the proof.

From the extension property II a) of the invariant map, we obtain an injective homomor-
phism

invK : H2(T/K)→ Q/Z .

This homomorphism is even bijective, since Q/Z = ⋃∞
n=1

1
n
Z/Z, and since for every

positive integer n there exists (exactly) one unramified extension L/K of degree n = [L :
K]

Corollary 15.5
H2(T/K) ∼= Q/Z .

If L/K is an unramified extension, the Galois group is cyclic and hence coincides with
its abelianization. Hence the norm residue symbol has a very simple, explicit description:

Theorem 15.6 Let L/K be unramified, and a ∈ K×. Then

(a, L/K) = ϕ
vK(a)
L/K .

Proof If χ ∈ χ(GL/K), δχ ∈ H2(GL/K ,Z) and a = a ·NL/KL
× ∈ H0(L/K), then

χ(a, L/K) = invL/K(a ∪ δχ)

by Lemma 14.10. This formula, together with 15.3, implies that
χ(a, L/K) = invL/K(a ∪ δχ) = ϕ ◦ δ−1 ◦ v(a ∪ δχ)

= ϕ ◦ δ−1(vK(a) · δχ) = ϕ(vK(a) · χ) = vK(a) · χ(ϕL/K)
= χ(ϕvk(a)

L/K ).
Since this holds for all χ ∈ χ(GL/K), it follows that (a, L/K) = ϕ

vK(a)
L/K .
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16 Local class field theory III

Finally we extend the invariant map to arbitrary extensions of local fields. This relies on
the following result:

Theorem 16.1 If L/K is a normal extension of local fields, and L′/K is the unramified
extension of the same degree [L′ : K] = [L : K], then

H2(L/K) = H2(L′/K) ⊆ H2( /K) .

Proof It suffices to show the inclusion

H2(L′/K) ⊆ H2(L/K) .

In fact, if this holds, then the inclusion must be an equality, because |H2(L′/K)| = [L′ : K]
by15.3, and |H2(L/K)|/[L : K] by Theorem 12.1.

But if N = L · L′, and L′/K is unramified, then N/L is unramified, too (Note: If T is
the maximal unramified extension of K, then T · L is the maximal extension of L). Now
let c ∈ H2(L′/K) ⊆ H2(N/K). Then it follows from the exact sequence

1→ H2(L/K)→ H2(N/K) resL−→ H2(N/L)

that c lies in H2(L/K) if and only if resL(c) = 1. Since resL(c) = 1 if and only if
invN/L(resL(c)) = 0 (see 15.1), our theorem follows once we have shown that

(16.1.1) invN/L(res L(c)) = [L : K] invL′/K(c) ∈ 1
[N : L]Z/Z ,

since invL′/K(c) ∈ 1
[L:K]Z/Z, and and hence [L : K] · invL′/K(c) = 0.

Now (16.1.1) is a special case of the following Lemma.

Lemma 16.2 Let M/K be a normal extension containing the two extensions L/K and
L′/K with L′/K unramified. Then N = L · L′/K is also unramified. If c ∈ H2(L′/K) ⊆
H2(M/K), then resL c ∈ H2(N/L) ⊆ H2(M/L), and

invN/L(res Lc) = [L : K] · invL′/K c .

Proof The fact that the 2-cocycles of the class resL c have their values in N×, implies
that resL c ∈ H2(N/L).

Let f be the inertia degree and e the ramification index of the (not necessarily normal)
extension L/K. We think of the valuations vK and vL as extended to M . Then we have
vL = e ·vK . By definition, the invariant map is the composition of the three isomorphisms
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v, δ−1, and ϕ. Hence, to prove the above formula it suffices to check that the following
diagram commutes:

H2(L′/K) vK //

incl
��

H2(GL′/K ,Z) δ−1
//

inf
��

H1(GL′/K ,Q/Z) ϕ //

inf
��

1
[L′:K]Z/Z

incl
��

H2(M/K)

resL
��

H2(GM/K ,Z)

e·res
��

H1(GM/K ,Q/Z)

e·res
��

1
[M :K]Z/Z

·[L:K]
��

H2(N/L) vL // H2(GN/L,Z) δ−1
// H1(GN/L,Q/Z) ϕ // 1

[N :L]Z/Z

Here it is understood that the lower vertical maps only map the images of the vertical
maps to the cohomology groups in the bottom row.

That the left square commutes follows from the behaviour of the 2-cocycles under the
maps in question.

The middle square commutes because he inflation and restriction maps commute with
the δ-maps.

To see that the right squre commutes, we have to consider the equation

ϕN/L|L′ = ϕfL′/K ,

which is a generalization of 15.2. But it is easy to see that, if a ∈ L′, then

ϕN/L(a) ≡ aqL mod PN ≡ aq
f
k ≡ mod PL′

= ϕfL′/K(a) .

Now, if χ ∈ H1(GL′/K Q/Z), then

[L : K] · χ(ϕL′/K) = e · fχ(ϕL′/K) = e · χ(ϕfL′/K)
= e · χ(ϕN/L|L′ ) = e · Inf χ(N/L)
= e · (Res ◦ Inf)χ(ϕN/L) .

Hence the right diagram commutes, which proves the lemma.

From Theorem 16.1 we have the equality

Br(K) := H2( /K) = H2(T/K) =
⋃
L/K

H2(L/K) ,

where L runs over the unramified extensions of K. Hence from 15.5 we get

Theorem 16.3 The Brauer group of a local p-adic field K is canonically isomorphic to
Q/Z:

Br(K) ∼= Q/Z
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Definition 16.4 Let L/K be a normal extension and let L′/K be the unramified
extension of the same degree [L′ : K] = [L : K], so that H2(L/K) = H2(L′/K). Define
the invariant map

invL/K : H2(L/K)→ 1
[L : K]Z/Z

to be the isomorphism with
invL/K(c) = invL′/K(c)

for c ∈ H2(L/K) = H2(L′/K).

With the definition of this invariant map we have reached our goal:

Theorem 16.5 Let K be a p-adic number field, let Ω be its algebraic closure, and let
GK = GΩ/K be the Galois group of Ω/K. Then the formation (GΩ/K ,Ω×) is a class
formation with respect to the invariant map defined in 16.4.

Proof Axiom I is satisfied by Hilbert 90: H1(L/K)(= H1(L×/K×)) = 1. The Axiom II
is obtained by passing to the unramified extension of the same degree.

Furthermore the Main Theorem of Local Class Field Theory is

Theorem 16.6 Let L′/K be a normal extension. Then the homomorphism

uL/K∪ : Hq(GL/K ,Z)→ Hq+2(L/K)

is an isomorphism.

For q = −2 we get the local reciprocity law:

Theorem 16.7 For every normal extension L/K we have the isomorphism

Gab
L/K
∼= H−2(GL/K ,Z)

uL/K∪−→
∼

H0(L/K) = K×/NL/KL
× .

Moreover, all properties of the abstract class field theory hold.

For q = 1 and 2 we get:

Corollary 16.8 H3(L/K) = 1 and H4(L/K) = χ(GL/K)
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17 Global class field theory I

In the following we will consider idèles. (Introduced by Chevalley, as so-called “ideal
elements”).

Definition 17.1 Let K be an algebraic number field. An idèle a of K is a family
a = (ap)p of elements ap ∈ K×p where ap is a unit for almost all p.

We also obtain these idèles as follows

Definition 17.2 Let S be a finite set of primes of K. The group

ISK =
∏
p∈S

K×p ×
∏
p/∈S

Up ⊆
∏
p

K×p

is called the group of S-idèles of K.

The union
IK =

⋃
S

ISK ⊆
∏
p

K×p ,

where S runs over all finite sets of primes, is then the idèle group (group of all idèles)
of K.

The ap are called the local components of the idèle, and ap is called an essential
component, if ap is not a unit.

If x ∈ K×, then we let (x) be the idèle, whose component is x at all places. Note that x
is a unit for almost all p. In this way, K× is embedded canonically into IK . The idèles
from K× are called the principal idèles of K.

If S is a finite set of primes of K, we denote by

KS = K× ∩ ISK ⊆ ISK

the group of S-principal idèles.

The elements in KS are also called the S-units in K, since they are units for all primes
p /∈ S. In particular, if S = S∞ is the set of infinite primes of K, then KS∞ is the usual
unit group UK = O×K of K.

Definition 17.3 The factor group

CK = IK/K
×

is called the idèle class group.

This will be the group of our main interest.

The connection between the idèles and the ideals of K is the following.
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Proposition 17.4 Let S∞ be the set of infinite primes of K, and let IS∞K be the group
of idèles which have units as components for all finite primes. Then we have canonical
isomorphisms

IK/I
S∞
K
∼= JK , IK/I

S∞
K ·K× ∼= JK/PK ,

where JK is the group of ideals and PK is the group of principal ideals.

Exercise!

Unlike the class group ClK = JK/PK , the ideal class group CK = IK/K
× is not finite.

However, the finiteness of the ideal class group is reflected in the fact that all idèle classes
in CK can be represented by S-idèles a ∈ ISK for a finite set S of primes:

Proposition 17.5 Let S be a sufficiently large set of primes. Then

IK = ISK ·K×, and therefore CK = ISK ·K×/K× .

Proof The ideal class group JK/PK is finite. Hence we can choose a finite set of
ideals a1, . . . , an which represent the classes in JK/PK . The ideals are further composed
from only finitely many prime ideals P1, . . . ,Ps. Now, if S is any set of primes of K×
containing the primes P1, . . . ,Ps and all the infinite primes, then one has in fact

IK = ISK ·K× .

For this we consider the isomorphism

IK/I
S∞
K
∼= JK/PK

(see 17.4). If a ∈ IK , then the corresponding ideal a = ∏
p-∞

pvPap lies in a class aiPK ,

i.e., a = ai · (x), where (x) ∈ PK denotes the principal ideal given by x ∈ K×. The
idèle a′ = a · x−1 is mapped onto the ideal A′ = ∏

p-∞Pvpa′p = Ai. Since the prime ideal
components of Ai lie in the set S, we have vpa′p = 0 for all p /∈ S; thus a′ = a · x−1 ∈ ISK ,
a ∈ ISK ·K×.

Now we study the behaviour in extension fields.

Let L/K be a finite extension of number fields. If p is a prime of K and P is a prime of
L lying over p, we write P/p.

The idèle group IK of K is embedded into the idèle group IL of L as follows: An idèle
a ∈ IK with components ap is mapped to the idèle a′ ∈ IL with components aP′ = ap for
P′/p. This gives an injection

IK ↪→ IL ,

which we regard as an inclusion.

With this identification, an idèle a in IL is in IK if and only if its components aP lie in
Kp (where P/p), and moreover any two primes P and P′ lying over the same p of K
have equal components aP = aP′ ∈ Kp.
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If L/K is normal and G = GL/K is the associated Galois group, IL is canonically a
G-module: An element σ ∈ G defines a canonical isomorphism from Lσ−1P to LP, which
we denote by σ again.

Hence to an idèle a ∈ IL with components aP ∈ L×P we associate the idèle σa ∈ IL with
components

(σa)P = σaσ−1P ∈ L×P .

Note that aσ−1P ∈ Lσ−1P is the σ−1P-component of a, which is mapped by σ into L×P. If
we take into account that the P-component (σa)P of σa is essential if and only if the
σ−1P-component aσ−1P of a is essential, we immediately see that, when passing to ideals,
the map induced by a 7→ σa is just the conjugation map on the ideal group JL

Proposition 17.6 Let L/K be normal with Galois group G = GL/K . Then

IGL = IK .

Proof The inclusion IK ⊆ IGL is easy: If σ ∈ G, then the isomorphism

Lσ−1P
σ−→ LP

is a Kp-isomorphism (for P/p), and if a ∈ IK is considered as an idèle of IL, then
(σa)P = σaσ−1P = σaP = pP, i.e., σa = a.

For the inclusion IGL ⊆ IK , consider a ∈ IL with σa = a for all σ ∈ G. Then (σa)P =
σaσ−1P = ap for all primes P of L.

By number theory, we can regard the decomposition group GP of P over K as the
Galois group of the extension LP/Kp. For every σ ∈ GP we have σ−1P = P, and since
aP = σaσ−1P = σaP, we obtain aP ∈ Kp (P/p).

Hence, if σ is an arbitrary element of G, then (σa)P = aP = σaσ−1P = aσ−1P ∈ Kp,
i.e., two prime ideals P and σ−1P lying above the same prime p of K have the same
components aP = aσ−1P ∈ Kp, so that a ∈ IK .

It is well-known that an ideal of a field K can become a principal ideal in an extension
field L without being principal ideal in the base field K. The following proposition shows
that the idèles behave differently

Proposition 17.7 If L/K is an arbitrary finite extension, then

L× ∩ IK = K× .

In particular, if a ∈ IK is an idèle of K that becomes a principal idèle in L, i.e., a ∈ L×,
then a is already principal in K.
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Proof The inclusion K× ⊆ L× ∩ IK is trivial. Now let L̃ be a finite normal extension of
K containing L, and let G̃ = GL̃/K be its Galois group. Then IK and IL are subgroups
of IL̃. If a ∈ L̃× ∩ IK , then Proposition 17.7 shows that a ∈ IG̃

L̃
= K×. Therefore

L̃× ∩ IK = K×, which implies L× ∩ IK ⊆ L̃× ∩ IK = K×.

By 17.7 we can embed the idèle class group CK of a field K into the idèle class group CL
of a finite extension L, using the canonical homomorphism

ι : CK → CL , a ·K× 7→ a · L×

(a ∈ IK ⊆ IL). To see that ι is injective, note that, if the class a ·K× ∈ CK is mapped
to the unit class L× ∈ CL, so that a · L× = L×, a ∈ L×, then we know by 17.7 that
a ∈ L× ∩ IK = K×, i.e., a ·K× = K× is the unit class of CK .

In the following we view CK as embedded in CL via this canonical map, hence as a
subgroup of CL. An element a · L× ∈ CL (with a ∈ IL) lies in CK if and only if the class
a · L× contains a representative a′ from IK (⊆ IL) such that a′ · L× = a · L×.

Theorem 17.8 Let L/K be Galois extension with Galois group G = GL/K . Then CL
is canonically a G-module, and

CG
L = CK .

Proof If a ·L× ∈ CL (a ∈ IL), we set σ(a ·L×) = σa ·L×. This definition is independent
of the choice of a ∈ IL, and makes CL a G-module.

From the exact sequence of G-modules

1→ L× → IL → CL → 1

we obtain the exact cohomology sequence

1→ (L×)G → IGL → CG
L → H1(G,L×) ,

where (L×)G = K×, IGL = IK , and H1(G,L×) = 1, so that CG
L = CK .
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18 Global class field theory II

We will now study the cohomology of the idèle groups.

Let L/K be a finite normal extension of number fields with Galois group G = GL/K . We
consider the cohomology groups Hq(G, IL) of the G-module IL, and we will show that
these groups can be decomposed into a direct product of cohomology groups of the local
fields Kp.

Let S be a finite set of primes of K, and let S̃ be the finite set of primes in L above the
primes in S. For simplicity, we denote the group of S̃-idèles I S̃L also by ISL , and call them
the S-idèles of the field L; we will use the same convention in later sections as well.

Thus we have
ISL =

∏
P|p∈S

L×P ×
∏

P|p/∈S
UP =

∏
p∈S

∏
P/p

L×P ×
∏
p/∈S

∏
P|p
UP .

We consider the products IpL = ∏
P/p L

×
P and U p

L = ∏
P/p UP as subgroups of ISL , where

we think of the elements in IpL (resp. in U p
L) as those idèles which have the component 1

at all the primes of L not lying over p (resp. in addition have only units as components
at the primes of L lying above p).

Since the automorphisms σ ∈ G only permute the primes P above p, the groups IpL and
U p
L are G-modules.

Thus we have decomposed ISL into a direct product of G-modules

ISL =
∏
p∈S

IpL ×
∏
p/∈S

U p
L .

For the G-modules IpL and IpL we have:

Proposition 18.1 Let P be a prime of L lying over p. Then

Hq(G, IpL) ∼= Hq(GP, L
×
P) ,

where GP is the decomposition group of P over K, considered also as the Galois group
of LP/Kp. If p is a finite prime unramified in L, then

Hq(G,U p
L) = 1

for all q.

Addendum: The first isomorphism is given by the composition

Hq(G, IpL) res−→ Hq(GP, I
p
L) πP−→ Hq(GP, L

×
P) ,

where πP is induced by the canonical projection IpL → L×P which takes each idèle in ILp
to its P- component.
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Proof If σ ∈ G runs through a system of representations of the cosets G/GP, for
simplicity we write σ ∈ G/GP, then σP runs through all distinct primes of L above p.
Hence

IpL =
∏

σ∈G/GP

L×σP =
∏

σ∈G/GP

σL×P, and

U p
L =

∏
σ∈G/GP

UσP =
∏

σ∈G/GP

σUP ,

which shows that IpL and U p
L are G/GP-induced modules.

Applying Shapiro’s Lemma (Lemma 11.8), we get

Hq(G, IpL) ∼= Hq(GP, L
×
P×)

and
Hq(G,U p

L) ∼= Hq(GP, UP) ,
where the first isomorphism is the one given in the addendum.

If p is unramified in L, then the extension LP/Kp is unramified, and by Theorem 12.4
we get Hq(G,U p

L) ∼= Hq(GP, UP) = 1.

By Proposition 18.1 and the decomposition

ISL =
∏
p∈S

IpL ×
∏
p/∈S

U p
L

the cohomology groups of the idèle groups ISL and IL are easy to compute. By the
compatibility of cohomology groups with products (see exercise sheet 5) we get

Hq(G, ISL) =
∏
p∈S

Hq(G,IpL)×
∏
p/∈S

Hq(G,U p
L)

If the finite set S contains all (finite) primes of K which are ramified in L, then
by Proposition 18.1 we have Hq(G, IpL) ∼= Hq(GP, L

×
P) (P any primes above p), and

Hq(G,U p
L) = 1 for each p /∈ S. Therefore

Hq(G, ISL) ∼=
∏
p∈S

Hq(GP, L
×
P)

(P any primes above p).

Since IL = ⋃
S I

S
L , we also have

Hq(G, IL) = lim−→
S

Hq(G, ISL)

= lim−→
S

∏
p∈S

Hq(GP, L
×
P)

∼=
⊕
p
Hq(GP, L

×
p )

(where ⊕ denotes the direct sums of the groups in question, so that almost all components
are zero). So we get
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Theorem 18.2 Let S be a finite set of primes of K which contains all primes ramified
in L. Then
(a) Hq(G, ISL) = ∏

p∈S
Hq(GP, L

×
P)

(b) Hq(G, IL) ∼=
⊕
p
Hq(GP, L

×
P) .

From the proof and the addendum in 18.1 we further get:

Addendum: The isomorphism (b) is given by the projectionsHq(G, IL) res−→ Hq(GP, L
×
P),

i.e., the composition

Hq(G, IL) res−→ Hq(GP, IL) π−→ Hq(GP, L
×
P)

where π is induced by the canonical projection IL π−→ L×P which takes each idèle to its
P-component aP.

The following proposition shows how changing the fields affects local components.

Proposition 18.3 Let N ⊇ L ⊇ K be normal extensions of K, and let P′/P/p be
primes of N,L, and K, respectively. Then

(infN c)p = infNP
(cp), c ∈ Hq(GL/K , IL), q ≥ 1 .

(resL c)P = resLP
(cp), c ∈ Hq(GN/K , IN) ,

(corK c)p = ∑
P/p corKp(cP), c ∈ Hq(GN/L, IN) .

For the last two formulas it suffices to assume that only N/K is normal.

For the third formula note that for each prime P/p we choose a prime P′ of N
above P; thus the corestrictions corKp(cP) a priori lie in distinct cohomology groups
Hq(GNP′/Kp, N

×
P′). But we can identify these as follows: Given two primes P′ and P′′ of

N lying over p, there is a canonical automorphism σ ∈ GN/K interchanging these primes;
given this, the isomorphism N×P′

σ−→ N×σP′ induces a canonical isomorphism

Hq(GNP′/Kp , N
×
P′) ∼= Hq(GNσP′/K

′
p
N×σP′) .

Hence we may regard corKp(cP) for each P/p as an element of the group Hq(GNP′/Kp , N
×
P )

for a fixed choice of P′/p, and form the sum in the corestriction in this group.

The proof of Proposition 18.3 uses the general and purely cohomological fact that the
restriction map which occurs when passing to the local components, commutes with the
maps Inf, Res, and Cor.

This is easy to see at the cocycle level for inf and res for q ≥ 1, and for cor if q = −1, 0.
The general case follows by dimension shifting.

Theorem 18.2 gives the following result, which is also called the Norm Theorem for
idèles.
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Corollary 18.4 An idèle a ∈ IK is the norm of an idèle b of IL if and only if each
component ap ∈ K×p is the norm of an element bP ∈ L×P (P/p), i.e., if and only if it is a
local norm everywhere.

Corollary 18.5 H1(G, IL) = H3(G, IL) = 1.

This follows from Corollary 16.8.

The fact that H1(G, IL) = 1 implies that, with respect to the idèle groups, the extensions
L/K form a field formation.

This allows us to regard the cohomology groups H2(GL/K , IL) as the elements of the
inductive limit of all these groups, via the inflations, regarded as inclusions:

H2(GΩ/K , IΩ) =
⋃
L

H2(GL/K , IL) ,

where Ω is the field of all algebraic numbers (the algebraic closure of Q).

In local class field theory we have seen that the Brauer group is generated by all unramified
extensions.

In the global case we have:

Theorem 18.6 Let K be a number field of finite degree over Q. Then we have

Br(K) =
⋃

L/Kcyclic
H2(GL/K , L

×)

and
H2(GΩ/K , IΩ) =

⋃
L/Kcyclic

H2(GL/K , IL) ,

where L/K ranges over all cyclic cyclotomic extensions.

We only prove this for IL; the case of the Brauer group is similar.

For the proof we use the following:

Lemma 18.7 Let K be a finite extension of Q, let S be a finite set of primes of K, and
let m be a natural number. Then there exists a cyclic cyclotomic field L/K with the
property that

a) m | [LP : Kp] for all finite p ∈ S,

b) [LP : Kp] = 2 for all real infinite p ∈ S.
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Proof It suffices to prove the lemma for K = Q; the general case follows by taking
composita. More precisely, if N/Q is a totally imaginary cyclic cyclotomic field, such that
for every prime number p above which there is a prime of K in S the degree [NP : Qp] is
divisible by m · [K : Q], then L ·N has the desired property.

Let `n be a prime power, and let ζ be a primitive `n-th root of unity. If ` 6= 2, then the
extension Q(ζ)/Q is cyclic of degree `n−1 · (`− 1), and we denote the cyclic subfield of
degree `n−1 by L(`n).

If ` = 2, then the Galois group of Q(ζ)/Q is the direct product of a cyclic group of order
2 and a cyclic group of order 2n−2. In this case we consider the field L(2n) = Q(ξ) with
ξ = ζ − ζ−1. The automorphisms of Q(ζ) are defined by σν with σν(ζ) = ζν with ν odd,
and we have σν(ξ) = ζν − ζ−ν .

Since ζ2n−1 = −1, we have σν(ξ) = σn+1
ν+2(ξ) and since either ν or −ν + 2n−1 ≡ 1 mod 4,

the automorphisms of L(2n) = Q(ξ) are induced by those with ν ≡ 1 mod 4.

Now an elementary calculation shows that the Galois group of L(2n)/Q is cyclic of order
2n−2. Moreover, because σ−1ξ = −ξ, the field L(`n) is totally imaginary for large n.

If p is a prime number, then the local degree [L(`n)P : Qp] becomes an arbitrarily
high `-power, because in any case [Qp(ζ) : Qp] becomes arbitrarily big, and we have
[Qp(ζ) : L(`n)P] ≤ `− 1 for odd ` and ≤ 2 for ` = 2.

If we now consider m = `r1
1 . . . `rss , then the field

L = L(`n1
1 ) · L(`n2

2 ) · . . . · (L(`nss )L(2t))

gives the wished property, if the ni and t are sufficiently big.

In fact, then for the finitely many primes p ∈ S the local degrees [LP : Qp] are divisible
by each power `rii , hence divisible by m; L is totally imaginary by the factor L(2t), and
cyclic over Q, since the L(`n) are cyclic with pairwise coprime degrees.

Now we prove Theorem 18.6. We only give the proof for the group H2(GΩ/K , IΩ), since the
case Br(K) is verbatim the same, if one replaces the idèle groups IL by the multiplicative
groups L×.

Hence let c ∈ H2(GΩ/K , IΩ), e.g., c ∈ H2(GL′/K , IL′), let m be the order of c, and S the
(finite) set of primes p of K, for which the local components cp of c are different from 1.

By the above Lemma we find a cyclic cyclotomic L/K with m | [Lp : Kp] for the finite
p ∈ S and [LP : Kp] = 2 for real infinite p ∈ S.

If we form the compositum N = L · L′, then

H2(GL′/K , IL′), H2(GL/K , IL) ⊆ H2(GN/L, IN) ,

and we will show that c lies in H2(GL/K , IL).
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By the exactness of the sequence

1→ H2(GL′/K , IL′)→ H2(GL/K , IL)→ H2(GN/L, IN)

it suffices to show that resL c = 1.

But by local class field theory and by 18.2 and 18.3 we have
resL c = 1

⇔ (resL c)P = resLP
cp = 1 for all primes P of L

⇔ invNP′/Lp(ResLP
cp) = [LP : Kp] · invNP′/Kp = invNP′/Kp cp = invNP′/Kp c

[LP:Kp]
p = 0 for

all primes p of K
⇔ c

[LP:Kp]
p = 1 for all p ∈ S.

But the last property holds, since cmp = 1 and m | [LP : Kp] for the finite places and
[LP : Kp] = 2 for the real infinite p ∈ S.
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19 Global class field theory III

We will now consider the cohomology of the idèle class groups. In particular, for showing
that we get the class field theory axioms, we have to show that, for a Galois extension
L/K of number fields with Galois group G = GL/K , that H1(G,CL) = 1 and that
H2(G,CL) is cyclic of order [L : K].

Consider a normal extension L/K with cyclic Galois group G = GL/K of prime order
p.

Theorem 19.1 The idèle class group CL is a Herbrand module with Herbrand quotient

h(CL) = |H
0(G,CL)|

|H1(G,CL)| = p .

Corollary 19.2 (First fundamental inequality)

|H0(G,CL)| = (CK : NL/KCL) = p · |H1(G,CL)| ≥ p .

Proof of Theorem 19.1 Let S be a finite set of primes of K such that

1. S contains all infinite primes and all primes ramified in L/K.

2. IL = ISL · L×.

3. IK = ISK ·K×.

Note that, by Proposition 17.5, such a set S certainly exists.

Then we have
CL = ISL · L×/L× ∼= ISL/L

S ,

where LS = L× ∩ ISL is the group of S-units, i.e., the groups of all those elements of L×
which are units for all primes P of L which do not lie above the primes in S.

From Theorem 9.4 we get
h(CL) = h(ISL) · h(LS)−1

in the sense that when two of these Herbrand quotients are defined, then the third
Herbrand quotient is defined as well, and we get the above equality.

By Theorem 18.2, the computation of h(ISL) is a local question. Let

n be the number of primes in S

N be the number of primes of L which lie over S.

n1 the number of primes in S which are inert.

Since [L : K] has prime degree, a prime which is not inert splits completely, i.e.,
decomposes into exactly p primes of L, so that N = n1 + p(n− n1).
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To compute the quotient

h(ISL) = |H0(G, ISL)|/|H1(G, ISL)| ,

we have to determine |H0(G, ISL)| and |H1(G, ISL)|.

We do this by making use of the isomorphismHqG, ISL) ∼=
∏

p∈S H
q(GP, L

×
P) from Theorem

18.2.

If q = 1, the above isomorphism gives H1(G, ISL) = 1, since H1(GP, L
×
P) = 1. If q = 0,

then H0(G, ISL) = ∏
p∈S

H0(GP, L
×
P), and it remains to determine the order of H0(GP, L

×
P),

which is done using local class field theory. In fact, we have H0(GP, L
×
P) ∼= GP by local

class field theory.

Hence we have

|H0(GP, L
×
P)| =

{
1 , if the prime p under P splits (because GP = 1)
p , if p is inert (because GP = G)

With this we get |H0(G, ISL)| = pn1 , and since H1(G, ISL) = 1, we have h(ISL) = pn1 .

For the computation of h(LS) we use the formula for the Herbrand quotient from Theorem
9.10: By Number Theory, the group LS of S-units in L is a finitely generated group,
and its rank is equal to |S| − 1, where |S| denotes the number of primes in S, and the
group LS)G = KS = K× ∩LS is the group of S-units of K and finitely generated of rank
n− 1.

Hence Theorem 9.10 gives

h(LS) = p(p(n−1)−N+1)/(p−1)

= p(p(n−1)−n1−p(n−n1)+1)/(p−1)

= p(n1−1) .

Since both Herbrand quotients h(ISL) and h(LS) are defined, h(CL) is defined as well,
and the above formulas imply

h(CL) = h(ISL) · h(LS)−1 = p .

This implies 19.1 and 19.2.

We now show the second fundamental inequality

(CK : NGCL) ≤ p

for cyclic extensions of prime degree, under the additional assumption that K contains
the p-th roots of unity. In this case L is a Kummer extension: L = K( p

√
x0) for some

x0 ∈ K×. We start with the following lemma:
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Lemma 19.3 Let N = K( p
√
x), x ∈ K× be any Kummer extension over K, and let p

be a finite prime of K not lying over the prime number p. Then p is unramified in N if
and only if x ∈ Up · (K×p )p, and p splits completely in N if and only if x ∈ (K×p )p.

Proof Let P be a prime of N over p. Then NP = Kp( p
√
x). If x = u · yp, u ∈ Up and

y ∈ K×p , then NP = Kp( p
√
x) = Kp( p

√
x). If the equation Xp − u = 0 is irreducible over

the residue field of Kp, then it is also irreducible over Kp, and NP/Kp is an unramified
extension of degree p. If Xp − u = 0 is reducible over the residue field of Kp, then it
splits into p distinct linear factors there, since p is distinct from the characteristic of the
residue field, and by Hensel’s Lemma, Xp − u = 0 also splits into linear factors over Kp,
so that NP = Kp.

In both cases NP/p is unramified, i.e., p is unramified in N .

Conversely, if p is unramified in N , then NP = K( p
√
x) is unramified over Kp, and we

have p
√
x = u · πk, where u ∈ UP and π ∈ Kp is a prime element (of smallest value 1).

Thus we have x = up · xk·p, and therefore up ∈ Up, xk·p ∈ (K×p )p, i.e., u ∈ Up · (K×p )p.

The prime p decomposes in N if and only if NP = Kp( p
√
x) = Kp, hence if and only if

x ∈ (K×p )p.

Theorem 19.4 (Second fundamental equality) Let L/K be a cyclic extension of prime
degree p. Assume the field K contains the p-th roots of unity, then

|H0(G,CL)| = (CK : NGCL) ≤ p .

The difficulty here is that we cannot a priori decide which idèle classes in CK lie in NGCL.
This is completely different from the case of IK , where by the Norm Theorem for the
idèle groups an a ∈ IK is a norm if and only if it is a local norm everywhere.

Instead we use some auxiliary group F which is constructed such that its elements are
represented by norm idèles, and such that bist index (CK : F ) is equal to p.

Then we conclude by
(CK : NGCL) ≤ (CK : F ) = p .

Proof Let L = K( p
√
x0), x0 ∈ K×. Let S be a finite set of primes of K such that

1) S contains all the primes above p and S∞.

2) IK = ISKK
×

3) x0 ∈ KS = ISK ∩K× (i.e. x0 is an S-unit).

Here, 2) can be satisfied by Proposition 17.5, and 3) because x0 is a unit for almost all
primes.

Together with S we choose m additional primes a1 . . . am /∈ S that splits completely in
L; set S∗ = S ∪ {a1, . . . , am}. To construct F , we have to specify an idèle group F ⊆ IK
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whose elements represent the idèle classes of F , it must be sufficiently large to ensure
that the index (CK : F ) is finite and it must be simple enough so that it is possible to
compute the index. These properties are satisfied by the idèle group

F =
∏
p∈S

(K×p )p ×
m∏
i=1

K×ai ×
∏
p/∈S∗

Up

To see that F ⊆ NGIL, it suffices by Norm Theorem for idèles to convince ourselves
that the components ap of each idèle a ∈ F are norms from the extension LP/Kp(P/p).
This is true for p ∈ S, because ap ∈ (K×p )p ⊆ NLP/KpL

×
P; this is trivially true for p = ai,

because ai splits completely so that LP = Kp, and it is true for p /∈ S∗, because x0 ∈ Up

by 3) and therefore by Lemma 19.3 each p /∈ S∗ is unramified in L = K( p
√
x0), so that

ap ∈ Up ⊆ NLp/KpL
×
P by local class field theory. If we now set F = F ·K×/K×, then

F ⊆ NGCL, since each idèle class a is represented by a norm idèle a ∈ F .

To compute the index (CF : F ), we consider the following decomposition:

(CK : F ) = (IS∗K ·K∗/K× : F ·K×/K×) = (IS∗K ·K× : F ·K×) = (IS∗K ) : F/((IS∗K ∩K×) : (F∩K×))

It allows us to split computation of (CK : F ) into two parts, the computation of (IS∗K : F ),
which is of purely local nature, and the computation of ((IS∗K ∩K∗) : (F ∩K×)), which
uses global considerations.

(I) Claim: (IS∗K : F ) = ∏
p∈S

(K×p : (K×p )p = p2n, where n = ]S.

Since S ⊂ S∗, the map
ϕ : IS

∗
K → ∏

p∈S
K×p /(K×p )p

a 7→ (ap · (K×p )p)p
is surjective, and ker(`) = {a ∈ IS∗K | ap ∈ (K×p )p for all p ∈ S} = F .

By the local structure of K×p , we have

(K×p : (K×p )p) = p2|p|−1
p

(Here we use ∑p ∈ K), so that (IS∗K ) : F ) = p2n ∏
p∈S
|p|−1

p , where n = ]S.

Since the primes p /∈ S do not lie above the prime number p, |p|pp = 1 for p /∈ S, and by
the product formula ∏

p∈S
|p|p =

∏
p

|p|p = 1 .

Hence (IS∗K : F ) = p2n

Calculation of ((IS∗K ∩K×) : (F ∩K×))

We have

((IS∗K ∩K×) : (F ∩K×)) = (KS∗ : (F ∩K×)) = (KS∗ : (KS∗)p)
(F ∩K× : (KS∗)p)
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where KS∗ is the group of S∗-units, it is finitely generated of rank ]S∗ − 1 = n+m− 1.
Moreover KS∗ contains the p-th roots of unity. Hence (KS∗ : (KS∗)p) = pn+m on the
other hand,

K× ∩ F = K× ∩ ( ∏
p∈S

)p(K×p )p ×
m∏
i=1

K×ai ×
∏

p/∈S∗
Up)

= K× ∩ ⋂
p∈S

(K×p )p ∩
m⋂
i=1

K×ai ∩
⋂

p/∈S∗
Up

= K× ∩ ⋂
p∈S

(K×p )p ∩ ⋂
p/∈S∗

Up

If we choose the primes a1, . . . , am splitting in L such that

(i) m = n− 1

(ii) (K× · ∩F : (KS∗)p) = 1

Then we are done.

Lemma 19.5 There exist n − 1 primes of K, a1, . . . , an−1 /∈ S that splits completely
in L and satisfies the following condition: (If N = K( p

√
x) is a Kummer extension over

K in which all p ∈ S split completely and all p 6= a1, . . . , an−1 are unramified, then
N = K( p

√
x) = K.

Using this subscheme, we finish our proof of second fundamental inequality:

Claim
K× ∩

⋂
p∈S

(K×p )p ∩
⋂

p/∈S∗
Up = (KS∗)p

for S∗ = S ∪ {a1, . . . an−1}.

“⊇” it is trivial

“⊆” let x ∈ K× ∩ ⋂
p∈S

(K×p )p ∩ ⋂
p/∈S∗

Up, and N = K( p
√
x).

By Lemma 18.3, every p ∈ S splits completely in N , since x ∈ (K×p )p. For p /∈ S∗

we have x ∈ Up ⊆ Up · (K×p )p, so every p /∈ S∗ is ramified in N . Hence by the above
sublemma 19.5 yields = K( p

√
x) = K, i.e., x ∈ (K×)p and since x ∈ Up for p /∈ S∗,

x ∈ (K×)p ∩KS∗ = (KS∗)p.

We omit the proof of Lemma 19.5.

By technical abstract nonsense we can show

Theorem 19.6 If L/K is a normal extension with Galois group G = GL/K , then

(i) H1(G,CL) = 1

(ii) |H2(G,CL)| divides [L : K].
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20 Global class field theory IV

In order to prove that H2(G,CL) ∼= 1
[L:K]Z/Z, we need to study idèle invariants. Let

L/K be a normal extension with Galois group G = GL/K . The exact sequence

1→ L× → IL → CL → 1

induces an injection 0→ H2(GL/K , L
×)→ H2(GL/K , IL), since H1(GL/K , L

×) = 1.

From Theorem 18.2 and the local theory we get maps

H2(GL/K , IL) = ⊕
p
H2(GP, L

×
P)

invL/K

&&

∼
L⊂FT

//⊕
p

1
[LP:Kp]Z/Z
_�

��⊕
p

1
[L:K]Z/Z∑
��

1
[L:K]Z/Z ,

and define invL/K c = ∑
p

invLP/Kp cp for c ∈ H2(GL/K , IL) as indicated.

Theorem 20.1 H2(GL/K , L
×) ⊂ ker(invL/K).

Proof One can reduce to the case K = Q, L/Q cyclic cyclotomic extension. Then in
this case this inclusion can be checked explicitly.

Theorem 20.2 (Hasse principle of number fields) For every number field K, we have a
canonical exact sequence

1→ Br(K)→
⊕
p

Br(Kp)
invK−→ Q/Z→ 0

Proof It is enough to prove that

(∗) 1→ H2(GL/K , L
×)→ H2(GL/K , IL)

invL/K−→ 1
[L : K]Z/Z→ 0

is exact, for L/K cyclic.

By Theorem 20.1, (∗) is a complex. Since H1(GL/K , CL) = 1, the exactness on the left is
clear.

For the surjectivity of invL/K , we use the surjectivity of local invariant maps, and this
can be checked explicitly.
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It is enough to show ∣∣∣∣∣ H2(GL/KIL)
H2(GL/K , L×)

∣∣∣∣∣ ≤ [L : K] .

Again , the exact sequence 1→ L× → IL → CL → 1 induces an exact sequence

1→ H2(GL/K , L
×)→ H2(GL/K , IL)→ H2(GL/K , CL)

Therefore
∣∣∣∣ H2(GL/KIL)
H2(GL/K ,L×)

∣∣∣∣ ≤ |H2(GL/K , CL)| ≤ [L : K], where the last inequality follows
from Theorem 19.6.

The crucial point to show H2(GL/K , CL) ∼= 1
[L:K]Z/Z, for any normal extension L/K, is

the following theorem.

Theorem 20.3 If L/K is a normal extension, and L′/K is a cyclic extension of equal
degree [L : K] = [L′ : K], then

H2(GL′/K′ , CL′) = H2(GL/K , CL) ⊆ H2(GΩ/K , CΩ)

where Ω is an algebraic closure of K.

Proof We first show H2(GL′/K , CL′) ⊆ H2(GL/K , CL). If N = L · L′ is the compositum
of L and L′, then N/L is also cyclic. Now let c ∈ H2(GL′/K , CL′) ⊆ H2(GN/K , CN).

By the exact sequence

1→ H2(GL/K , CL) inv−→ H2(GN/K , CN) resL−→ H2(GN/L, CN) ,

we see that c ∈ H2(GN/K , CN) is an element of H2(GL/K , CL) if and only if resL c = 1.
To show this, we use the idèle invariants.

We have the following exact sequence

(∗∗) 1→ H2(GL′/K , L
′×)→ H2(GL′/K , IL′)

j→ H2(GL′/K , CL′)→ H3(GL′/K , L
′×)

Since H3(GL′/K , L
′×) = H1(GL′/K , L

′×) = 1, the map j is surjective. Hence there exists
c ∈ H2(GL′/K , IL′) ⊆ H2(GN/K , IN) s.t. E = jc.

Note that j commutes with inflation and with restriction, so we have

resLc = resL(jc) = jresLc

Thus resL c = 1⇔ resL c ∈ ker j = H2(GN/L, N
×).

Since N/L is cyclic, by the proof of Hasse principle (i.e. (∗))

resLc ∈ ker j ⇔ invN/L(resLc) = 0
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This last statement here follows from

invN/L(resLc) = [L : K] invN/K c = [L′ : K] invL′/K c = 0

Therefore H2(GL/K , CL′) ⊆ H2(GL/K , CL). To obtain the equality, we just compare the
orders of these groups. The exact sequence (∗∗) is

1→ H2(GL′/K , L
′×)→ H2(GL′/K , IL′)→ H2(GL′/K , CL′)→ 1

We have already seen

|H2(GL′/K , CL′)| =
∣∣∣∣∣H2(GL′/K , IL′)
H2(GL′/K , L′×)

∣∣∣∣∣ = [L′ : K] = [L : K] .

On the other hand, |H2(GL/K , CL)| | [L : K] by Theorem 19.6.

Hence H2(GL/K , CL) = H2(GL′/K , CL′).

Note that in the above proof, for a cyclic extension L′/K, we have a commutative
diagram

1 // H2(GL′/K , L
′×) //

0 ((

H2(GL′/K , IL′) //

invL′/K
��

H2(GL′/K , CL′) //

∃
invL′/Kvv

1

1
[L′:K]Z/Z

by Theorem 20.1.

Theorem 20.4 The invariant maps

invK : H2(GΩ/K , CΩ)→ Q/Z

and
invL/K : H2(GL/K , CL)→ 1

[L : K]Z/Z

are isomorphisms.

We denote by uL/K ∈ H2(GL/K , CL) the fundamental class of L/K, which is (uniquely)
determined by invL/K(UL/K) = 1

[L:K] + Z.

Now the Tate-Nakayama Theorem implies

Theorem 20.5 The cup product with uL/K induces an isomorphism

H1(GL/K ,Z)
uUL/K−→∼= Hq+2(GL/K , CL) .

In particular, for q = −2, we have
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Theorem 20.6 (Artin reciprocity law)

H−2(GL/K ,Z)
uUL/K// H0(GL/K , CL)

Gab
L/K CK/NGCL

ψL/K=πψLP/Kpoo

Theorem 20.7 (Existence theorem) The norm groups of CK are precisely the open
subgroups of finite index, i.e., there is a bijection:

(H ⊂ CKopen of finite index)( 1−1↔ (finite abelian extension of K)
NL/KCL ←[ L
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