ETALE DUALITY FOR CONSTRUCTIBLE SHEAVES
ON ARITHMETIC SCHEMES

UWE JANNSEN, SHUJI SAITO AND KANETOMO SATO

In this note we relate the following three topics for arithmetic schemes: a general dual-
ity for étale constructible torsion sheaves, a theorgtafe homology, and the arithmetic
complexes of Gersten-Bloch-Ogus type defined by K. Kato [KCT].

In brief, there is an absolute duality using certain dualizing sheaves on these schemes,
we describe and characterize the dualizing sheaves to some extent, relate them to symbol
maps, defin&tale homology via the dualizing sheaves, and show that the niveau spectral
sequence for the latter, constructed by the method of Bloch and Ogus [BO], leads to the
complexes defined by Kato. Some of these relations may have been expected by experts,
and some have been used implicitly in the literature, although we do not know any explicit
reference for statements or proofs. Moreover, the main results are used in a crucial way
in a paper by two of us [JS]. So a major aim is to fill a gap in the literature, and a special
emphasis is on precise formulations, including the determination of signs. But the general
picture developed here may be of interest itself.

0.1. Gersten-Bloch-Ogus-Kato complexesFor a schemeX and a positive integer
invertible onX, denote byZ/n(1) = p, theétale sheaf oiX of n-th roots of unity, and
letZ/n(r) = p2" be ther-fold Tate twist, defined for € Z. As usual, we let

Qp/Zy(r) =lim 1 Z/p"(r) (for p invertible onX).
For a smooth varietyX' over a perfect field of positive characteristic> 0 and integers
n > 0andr > 0, W, %, denotes thétale subsheaf of the logarithmic part of théh

Hodge-Witt sheaf,, ' ([B], [Ill]), which are Z/p"-sheaves. Itis also noteq . in the
literature. We denote

Weo QTX,log = hi>nn21 I/VTLQTX,log :
Let X be a noetherian excellent scheme, and,lahdz be points onX such that: has

codimensionl in the closure{y} ¢ X. Then for a prime numbey, Kato ([KCT] §1)
defined ‘residue maps’

H™ y, i) — H' (2, i) (if ch(x) # p)
(0.1.1) H'(y, WZQ;J{Olg) — H' (2, W, 1) (ifch(y) = ch(z) = p)
H* ™y, ps ) — HY (2, W, QL) (if ch(y) = 0 and cHz) = p),
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where the maps of second and third type have non-zero target only=fow, 1, and in
casei = 1 they are only defined ifx(z) : x(z)?] < p". For a pointz € X, we wrote
H*(x,—) for étale cohomology af = Spe¢x(x)), so this is just the Galois cohomology
of x(x), the residue field at. These maps are defined via the Galois cohomology of
discrete valuation fields, symbol maps on Milngrtheory, and the valuation (s€6.6
below). Therefore we will wnte‘)va' for these maps, and denote sheafified variants in the
same way. In particular, far = r = 0 the first and the last maps via Kummer theory
correspond to the map

K(Y)*(s(y) )" — Z/p"
induced by the discrete valuations on the normalizatiofrgf . .
It has become customary to denote

Lp"(r) = Wo Ll jog 7]

for an (essentially) smooth scheme over a perfect field of characteriddith this nota-
tion, all maps above have the form

83\;3! cH ™ (y, Z)p"(r + 1)) — H'(z,Z/p"(r)) .

Denote byX, the set of points: € X of dimensiory (i.e., whose Zariski closur{er_} has
dimensiorg). In [KCT], Kato showed that, for each triple of integérg andn > 0, the
sequence

C— @ H ™z, Z/n(r +j)) — @ H™ Yo, Z/n(r + 35— 1)) —

zeX, reX,_1

- D H(x,Z/n())
zeXo
whose maps have the compone&ﬁ , forms a complexC»7(X). It was a major moti-

vation for this paper to understand the m@9§ and these complexes in termséthle
duality.

0.2. Etale duality. A very general duality for constructibletale torsion sheaves has
been established in [SGA4]. This igelative duality, encoded in an adjunction

(0.2.1) Homx (%, Rf'9) = Homg(R/.7,9)

for a separated morphism of finite tyge: X — S and bounded complexes éfale
torsion sheaves” (on X) and¥ (on S) with constructible cohomology sheaves. There
is also a derived version, replacing Hom By#om. To obtain amabsoluteduality for
the cohomology groups of sheaves &nin the spirit of Poinca duality, one needs an
additional duality on the base scheifie For arithmetic applications one is interested in
schemesX of finite type overZ. Therefore we may assume thitat= Speco, ), whereo

is the ring of integers in a number fiekd Here one has the Artin-Verdier duality

(0.2.2) H™(S,.F) x ExXty™(F,Gy) — H3(S,Gp) = Q/Z,

where H" denotes the ‘cohomology with compact support’ [KCT] which takes care of
the archimedean places bf But the figuring ‘dualizing sheafG,, is not torsion, so the
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relative duality above, for a schem& S, does not apply. Nevertheless, for such a higher-
dimensional arithmetic schem¥, various absolute duality theorems have been obtained
(cf. [Dn], [Sp], [Mo], [Mi2], [Ge]), although always under some restrictions. For example
n-torsion sheaves fot invertible on X have been considered, & was assumed to be
smooth ovelS, or X was assumed to be a scheme over a finite field.

Our approach is to introduce a complex of torsion she&wgs(1)’; on S (see Defini-
tion 3.9.1, (4.1.3)) so that one has a perfect duality as in (0.2.2) when replagindy
Q/Z(1)s. Next we define the dualizing ‘sheaf’ (it is really a complex of sheavesj aa

s = Q/Z(1)5[2],
and on every separatédschemeX of finite type as
Ix = Rf'Ys,

wheref : X — S is the structural morphism. Then, by using (0.2.1), (0.2.2) and addi-
tional arguments, one gets a duality ($4.4)

H™X,Z) x Exty ™(F, Zx) — HYX, Zx) — Q/Z.

This is more or less formal, but we make the following three points. First, the duality is
completely generalX and the constructible comple¥ can be arbitrary. Henc& may
be highly singular, and we may considetorsion sheaves evenjifis not invertible on
X (so in particular, itX is an algebraic scheme oVEy), and the approach connects this
‘p-case’ and the case ‘away frgshin a nice way. Secondly, we have a lot of information
on the complexZx. Thirdly, it is this information that we need for the applications we
have in mind, cf. [JS].

We describe the information a#ix separately for each-primary part%x -, wherep
is a prime. Put

Z]p> = Q,/Z, and e := U fpn -

n>1

In the rest of thig0.2, suppose € N U {oo}. First we describ&/p"(1)%.

(i) Let S = Speco,) be as before. The complék/p"(1)s is, by definition, the
mapping fiber of a morphism

0" = 05+ Ricpyn — 0.2/p"[~1].

Herej : U = Specox[p~']) — S is the open immersion,: Z = S\ U — S is the
closed immersion of the complemet#t/p" is the constant sheaf afi, and .~ is the
sheaf ofp™-th roots of unity on/ (note thatp is invertible onUU). One hask?j,ji,» = 0

for ¢ > 2, and hencé??® is determined by the morphist' j, u,» — i.Z/p" it induces,

and by adjunction and localization, this is in turn completely described by the induced
morphisms

Oy : k™ /p" = H'(k,Z/p" (1)) — H(x,Z/p") = Z/p"

for each closed point € Z = S . U. Thend?® is completely determined by definirdy
to be the residue map (0.1.1), i.e., as,aed./p™, where ord : k* — Z is the normalized
discrete valuation corresponding:to
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Moreover, we will show that the mapping fiber &' is unique up to unique isomor-
phism in the derived category of sheavesdan In other wordsZ/p" (1) is the unique
complex# with 7|y = Z/p"(1), Ri'.F = Z/p"[—2], and for which the canonical mor-
phismRj.. 7|y — i.Ri'Z[1] is the morphism® described above. See the remarks after
Definition 3.9.1 for details.

Now we list the properties Wx ,» = Rf'Ps,» = Rf'Z/p"(1)5[2] for f : X — S
separated and of finite type.

(if) For pinvertible onX, Zx )~ is the usual dualizing sheaf for the ‘primedheory’
overok[p~']. In particular,Zx ,~ = Q,/Z,(d)[2d] if X is regular of pure dimensio#

(iif) For X of characteristig, i.e., of finite type over the prime fiel,, and of dimen-
siond, Zx ,~ is represented by the explicit complex

My P Wy, — P Wil — - — P /7,
zeXy r€Xg_1 € Xy
introduced by Moser [Mo] (except that we put the rightmost term in degree zero, while
Moser rather considers the compl@k , := .#x[—d]). In fact, we generalize Moser’s
duality over finite fields

HIN(X, F) x EXQT(F, x| ~d]) — HIH X, dx[~d]) = Qy/Z,
in the following way: We extend the duality to arbitrary perfect ground fiéldécharac-
teristicp, and show that#x is in fact R¢'Q,/Z,, whereg : X — SpecF,) is the struc-
tural morphism. (Together with the well-known duality of finite fields, this immediately

gives back Moser’s theorem). By Gros and Suwa [GrSu], one#as= W, QgI(JOg d], if
X is regular.

(iv) Finally, for X flat overS = Specox ), consider the closed immersion
1:Y =X @ F,—— X
and the open immersion
jU=Xp | ——=X
of the complement. There is a morphism
(5}9{"&' = 5}%‘2’,%2 : Rj Dy poe — 1Dy peo[1]

obtained froms¥® (cf. (i)) via Rf', wheref : X — S denotes the structural map. The
source and target are studied in (ii) and (iii) above, respectively, and it is clear from the
definitions thatZy ,~ is a mapping fiber 0652, In general, such a mapping fiber is
not unique (for the lack of the unicity of isomorphisms), but one of our main results is
the following: Zx ,~ is a unique mapping fiber @@ up to unique isomorphism (cf.
Theorem 3.11.1) and moreover whéhis smooth,55 " is uniquely characterized by

the property that, for every generic poipte Y and every generic poirgt € U which
specializes t@, the induced map

Hd<€>@p/zp(d)) - qu(y’ Qp/Zp(d —1)) = Ho(ya WOOQZ,_IC}g)
coincides with the residue map in (0.1.1), cf. Theorem 3.2.1 (3). Wheés proper (but
U arbitrary), we have a similar uniqgueness property.
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There is another morphism
553/(‘@)(@“) : Rj*-@U,pOO — i*.@y"poo[l] ,

the connecting morphism of localization theory @k ,~. We will also prove that this
morphism agrees with- " up to a sign, cf. (3.9.5).

0.3. Etale homology. Let k be a perfect field, and let be a separated scheme of finite
type overk. For integers: > 0, a andb, we define the&tale homology ofX' by

Ho(X,Z/n(b)) = H*(X, Rf'Z/n(~b)),

wheref : X — Speck) is the structural morphism. Note that for(éh = p > 0,

we haveZ/p"(—b) = WTQ,;?Og[b], which is the constant shedf/p” for b = 0, zero for

b < 0 (because is perfect), and zero by definition fér> 0. Therefore we will either
assume that is invertible ink, or thatb = 0. These groups satisfy all properties of a
(Borel-Moore type) homology theory, cf. [BO], [JS]. Thus the method of Bloch and Ogus

provides a converging niveau spectral sequence (loc. cit.)
(0.3.1) EL(X,Z/n(®) = @ Hapilw, Z/n(b) = Hyyo( X, Z/n(D).
.’L'EXS

Here we put

Hy(z,Z/n(b)) = lim H,(V,Z/n(b))

vc{z}

and the limit is taken over all non-empty open subvarielies {z}. If V is smooth of
pure dimensioml overk, then one has a canonical purity isomorphism

H,(V.Z/n(b)) = H*~*(V,Z/n(d - b))

between homology and cohomology. This is one of the main results of the Artin-Verdier
duality [SGA4] in the case is invertible ink, and follows from our results if2 for the
other case. As a consequence, one has canonical isomorphisms

D Howelz,Z/nb) = @ H (2, Z/n(s — b)),

reXs r€EXs

and the compIeEi,t of E'-terms of the spectral sequence can be identified with a com-
plex

c— P B @ Z/n(s - 1) — @ HT @, Z/n(s —b—1)) —

(0.3.2) o — P H (2, Z/n(-D)),

ze€Xo

where we place the last term in degree zero. Another main result of this paper is that
this complex coincides with the Kato compléx®~*(X) mentioned ir§0.1, up to well-
defined signs. 1151 we also give an absolute variant of this result, for the caseXhata
regular excellent noetherian scheme and invertible onX.
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Finally let X be a separated scheme of finite type aSer Spedoy ), whereK is a
number field, and let, « andb be integers. If. is invertible onX', we define thettale
homology as

H, (X, Z/n(b)) = H*(X, Rf'Z/n(-D)),

wheref : X — S[n~!] is the structural morphism. If is not invertible onX’, we just
consider the case= —1 and define

Ho(X,Z/n(-1)) = H*(X, Rf'Z/n(1)5),

wheref : X — S'is the structural morphism, ar#&/n(1)’s has thep-primary components

Z/p™ (1) from (i) for n = [] p™. Again, in both cases this defines a homology theory

in the sense of [BO] and [JS], and one gets a niveau spectral sequence with exactly the
same numbering as in (0.3.1). By the purity isomorphisms explained above, the complex
of E'-terms is identified with a complex

C— @ H %2, Z/n(s —b—1)) — @ H 732, Z/n(s — b —2)) —

reXs reXs_1

(0.3.3) o — P H (2, Z/n(=b - 1)),

xeXo

cf. [JS]. The difference in numbering between (0.3.2) and (0.3.3) is explained by the
purity results for the inclusion of the fibets, — X over closed point® € S. A

third main result of this paper is that, also in this mixed characteristic case, this complex
coincides with a Kato complex, viz(/,*=%27*~1(X). In fact, this gives an alternative
definition of the Kato complexes under consideration, which is very useful for working
with them.

0.4. Notations and conventions.For an abelian group/ and a positive integet, M /n

(resp., M) denotes the cokernel (resp. the kernel) of the thap> M.

In this paper, unless indicated otherwise, all conomology groups of schemes are taken
for the étale topology.

For a schemeX, we will use the following notation. For a non-negative integer
X, denotes the set of points oXi whose closure inX has dimensiony. If X is pure-
dimensional, then we will often writ& ¢ for the set of points oX of codimensiory. For
a pointz € X, x(x) denotes its residue field, amddenotes Spée(x)), the spectrum of
a separable closure efx). For a pointr € X and arétale sheaf#” on X, we will often
write H}(X,.7) for H}(Spe¢Ox ..), F).

Let X be a scheme and letbe a non-negative integer. Let 7 — X be a closed
immersion, and lej : U — X be the open complemet¥ ~ Z. For an object?” €
D" (Xe, Z/n), we define the morphism

095 () Riuj* # — Ri.Ri'H (1] in D*(XeyZ/n)

as the connecting morphism associated with the semi-splitting short exact sequence of
complexes

0 — i I* —1I° — g, I* — 0
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([SGA4§] Catégories [Brivées 1.1.2.4), wheré® is a resolution of’#” by injectiveZ /n-
sheaves oXg. It induces the usual connecting morphisms

59 ()« RYj.j*H — i, R
or the connecting morphisms in the localization sequencéXot’, U):
08 (H) - HY(U, j* H ) — HE™ (X, ).

The morphism'%%, (%) is functorial in.#", but does not commute with shift functors in
general. In fact, we have

(0.4.1) 007 (A)d) = (1)1 - 05%(H[q]) for q € Z.
By the convention in [SGA4] XVII.1.1.1 (which we follow and is usually taken, but which

is opposite to the one in [SGA#4 Categories [&rivées 1.1.2.1), the following triangle is
distinguished inD™ (X, Z/n):

050,

(0.4.2) Ri.Ri'\H —= SN Rjg

Ri Ri' (1],

where the arrow, (resp.;*) denotes the adjunction morphisRi, R:' — id (resp. id—
Rj.j*). We generalize the above definition of connecting morphisms to the following
situation. Lety andx be points onX such thatr has codimension in the closure
{y} c X. Puty := Specﬁﬁ@’x), and leti, (resp.i,, iy) be the natural map — X
(resp.y — X,Y — X). Then we define a morphism

508 (A) : Riy Rio ¥ — Rig Ri, A [1] in DT (Xe, Z/n)

asRiy. (0% (Riy X)),

T

0.5. Derived categories.We shall often use the following facts. Let be an abelian
category, and leb*(«7) be its derived category with boundary conditiog {0, +, —, b}.
0.5.1. Asequencel = B EATOIRR A[l]in D*(/) is a distinguished triangle if and only

it B35 o2 All] — B[1] is a distinguished triangle. (This is the axiom (TR2) for
triangulated categories, [SG,«%\]ﬁlCat'egories Deriges 1.1.1.)

0.5.2. Given a diagram

A B C All]
fl lh J/f[l}
AL g o un

in which the rows are distinguished triangles and the last square commutes, there is a mor-
phismg : B — B’ making the remaining squares commutative, i.e., giving a morphism
of distinguished triangles. Moreover one has

Lemma 0.5.3. The morphisng is unique in the following three cases
(l) HOIT]D(%)(B, A/) = 0.
(2) HomDW)(C, B/) =0.
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(3) Homp () (C, A') = 0 and Homy,, (A, C") = 0.

Proof. There is an induced commutative diagram with exact rows and columns

Hom(C, A’) —— Hom(B, A")

| |

Hom(C, B') —~~ Hom(B, B') —> Hom(4, B’)

b;i b;l

Hom (A, ") — Hom(C, ") —“~ Hom(B, C") .

Supposey; andg, both make the previous diagram commutative. Then the element
go € Hom(B, B’) is mapped to zero in Hofa, B’) and Hon{ B, C’). Under conditions
(1) and (2), either the right hardd or a* is injective, so the claim follows. Under condition
(3), the left hand’, and the loweb* are both injective, and again we ggt— g, = 0. O

0.5.4. Let ¢, r be integers, and let/ be an object inD(.<) which is concentrated in
degrees< r. Let N be an object inD(.«) which is concentrated in degrees0. Then
we have

Hom,, (s9(M), #°(N))  (fq=r) -+ (1)

0 (fg>r) - (2)

Here fors € Z, 5#¢(M) denotes the-th cohomology object of/. These facts are well-
known and easily proved, using [BBD] 1.3.2 and [SG%Catégories [@rivées 1.1.2.

Homp () (M, N[—q]) = {

0.6. Kato’s residue maps. We recall Kato’s definition of the residue maps in (0.1.1).
Consider a noetherian excellent schekhand pointse, y € X suchthat: liesinZ = @
and has codimension 1 id. The construction only depends ¢h (with the reduced
subscheme structure). Pat:= &, ,, a local domain of dimensioh. We may further
replaceZ with SpecA).

() Regular case First consider the case thdtis regular, i.e., a discrete valuation
ring. Thenk := k(y) = Fraq A) is a discrete valuation field arid:= «(x) is the residue
field of A, i.e., of the valuation. The residue map

0 = Oy + H YK, Zp" (r + 1)) — H'(k, Z/p" (1))

is obtained by restricting to the henselizatiffi (which corresponds to restricting to the
henselizatiom” = ﬁg@,) and defining a map for the discrete valuation figldwhich has

the same residue field Hence we may and will assume tiatis henselian (i.e.d = A"
andK = K"). Let K" be the maximal unramified extension &f(corresponding to the
strict henselizatioms" = & ;).

(1.1) If p # ch(k), we first have a map
HY (K, Z/p"(1)) <= K* [(K*)" — Z/p" = H*(k,Z/p"),
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where the first arrow is the Kummer isomorphism, and the second is induced by the
valuation. This is9*® for (i,7) = (0,0). In generab*? is the composition

H K, Z)p"(r + 1)) — H'(k, H' (K, 2/p"(r + 1)) — H'(k, Z/p" (1)) .

Here the first map is an edge morphism from the Hochschild-Serre sequencé'fé¢
(note that cdKs") = 1), and the second map is induced by (the Tate twist of) the previ-
ously defined map.

(1.2) Now letp = ch(k) (and recall thats” is henselian). In this casé(k, Z/p"(r))
= 0 fori # r,r + 1. Assume that = r. Thend"® is defined by the commutativity of the
diagram

(0.6.1) H YK, Z)p"(r + 1)) 2 H7 (k, Z/p" ()
hrti Tl ; h" Tl
KM, (K)/p KM(k)/p".

Here KM (F) is ther-th Milnor K-group of a fieldF, h" is the symbol map into Galois
cohomology, and is the suitably normalized residue map for Milnai-theory. By
definition,

h({ar, ... a}) = hi(a) U~ UR'(a,) € H'(F,Z/p"(r)),

whereh! : F*/p* — HY(F,Z/p"(1)) is defined as follows: it is the Kummer isomor-
phism ifp is invertible inF, and it is the isomorphisnilog : F* /p* — H°(F, W, Q)
if ch(F) = p. Itis known that, under our assumptions, the symbol niggs (0.6.1) are
isomorphisms ([BK]§2, §5). Finally, if 7 is a prime element fof’, theno is determined
by the property that

o{m, ay,...,a.}) ={a,...,a,},

forunitsay, ..., a, € A%, wherea; denotes the residue classafin the residue field:.

(1.3) Now leti = r + 1. In this case we assunje : k7] < p". Then the residue map
0¥ is defined as the compositioh (lenotes the separable closuré:pf

HY (s, HY (K 2" (7 + 1))~ 1k, 17 (F, 27 (1))

(*)T? (%) Tz

H2(K 2y (r + 1)) 7" B (k, Z/p(r)

Here the isomorphism@:) come from the Hochschild-Serre spectral sequences and the
fact that cd(k) < 1 and

HIY KN Z/p"(r +1)) =0 = H (k,Z/p"(r)) for j>r.
The map(xx) is induced by the map
H™ (K2 /p" (r + 1)) — H'(k, Z/p"(r))
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defined in (1.2). In [KCT] the completiomA( is used instead of the henselizatifif, but
this gives the same, because the map

(K Z/p"(r + 1)) — H (K™ Z/p"(r + 1))
is an isomorphism ([KaKu] proof of Theorem 1). Inde&d"/ Ks"is separable by excel-
lency of X.

(I) General case Now consider the case thdtis not necessarily regular. In this case
let 7/ — Z = Spe¢A) be the normalization. Note that' is finite overZ because the
latter is excellent. Then we define

Oi(a) = D Colunw)(O0(@)  (a€ H (y, Z/p"(r + 1))
|z
where the sum is taken over all pointse 7’ lying overz,
Oy HM (y, Z/p"(r + 1)) — H'(«', Z/p"(r))

Yz’
is the residue map defined for the discrete valuation €iag,/, and
(0.6.2) COLary/w@) + H' (', Z/p" (1)) — H'(x, Z/p"(r))

is the corestriction map in GaI0|s cohomology. Fpanvertible inx(x) this last map is
well-known. Fork(x) of characteristip and: = r, this corestriction map is defined as
the composition

()~ Mot g
(0.6.3) HO(2/ W, Q) = KM (k) /" =5 KM (k(2)) /p"
—> Ho(x WQ;log)

This implies that the diagram (0.6.1) is also commutative in this case. For the remaining
casei = r + 1 we may proceed as follows. It is easy to see that the map (0.6.3) is
compatible withétale base-change i{x). Therefore we get an induced corestriction or
trace map

(0.6.4) /e MWL 10 — WA S0 10g -
Then we define the corestriction (0.6.2) forehr)) = pandi = r + 1 as
(0.6.5) th e o H' (2, W, 0,) — H' (2, W, ),

the map induced by (0.6.4). K(z) is finitely generated over a perfect field the mor-
phisms (0.6.3), (0.6.4) and (0.6.5) agree with the trace map in logarithmic Hodge-Witt
cohomology defined by Gros [Gr]. See the appendix for this and further compatibilities.
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1. THE CASE WHEREp IS INVERTIBLE ON THE SCHEMEX

In this section, we work in the following setting. Lé&f be a noetherian excellent
regular scheme, let be a positive integer invertible ok and put/ := Z/n. For integers
q € Z, putA(q) := u®1, theg-fold Tate twist of theétale sheafl on X or X-schemes. Let
Z C X be aregular closed subscheme of pure codimensi&y Gabber’s construction
[FG], there is a cycle class€lZ) in theétale cohomology grouff (X, A(c)) (without
using the absolute purity), which satisfies the following three properties:
(G1) For anétale morphismX’ — X andZ’' := Z xx X', the pull-back of ck(Z) to
HZ (X', A(c)) agrees with ot/ (Z').

(G2) For regular closed subschemgs” Y C X, we have ck(Y)Ncly(Z) = clx(2)
in HZ(X, A(c)).

(G3) The image of ¢t (Z) in H°(Z, R*i'A(c)) coincides with Deligne’s cycle class
[SGA4§] Cycle §2.2. Herei = iz denotes the closed immersian— X.

1.1. Gysin maps and compatibility. Forgq,r € Z, one defines the Gysin map Gys

Gys : HY(Z, A(r)) — HE>(X, A(r +¢)), awclx(Z)Ua.

The main aim of this section is the following compatibility result. It will turn out that we
do not need the absolute purity in its proof.

Theorem 1.1.1.Letc be a positive integer, and l¢f : + — X andq, : y — X be points

on X of codimensior: and ¢ — 1, respectively, with: € {y}. Then the following square
commutes for integekg r > 0:

Aval
_dy,z

(1.1.2) H (y, A(r + 1))
Gysl’/i

HI#2L (X, A(r + c))

Ho(, A(r))
|or.

5'0‘;(/1(7“4-0) )
- X HIT2( X A(r + ¢)) .

__To prove the theorem, we may assume tRais local with closed point. PutZ :=
{y} < X, which has dimensioh and consists of two point§, z}. Letiy (resp..,) be
the closed immersio#d — X (resp.z — Z). The proof will be finished ir§1.4 below.

1.2. Regular case.We first prove Theorem 1.1.1, assuming tlas regular. In this case
Z is the spectrum of a discrete valuation riigand we have the cycle classes

cx(Z2) e HAV(X, A(c—1))  and  ch(z) € HA(Z, A(1))

by Gabber’s construction, where,¢l:) agrees with Deligne’s construction in [SG§3]4
Cycle§2.2 by (G3). There is a diagram of boundary maps

Gysi,u
H M (y, A(r + 1)) —= Hy#71(X, A(r + ¢))

_8va!£
/ lé&;’w(m)z) lémm(wcm

H(2, A(r)) g HIP(Z,Ar + 1) o HE (X, A(r +0)).
L A
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Here Gys is the map taking the cup-product withy¢l?)|spe¢o ), DY the property (G1),

and hence the right square commutes by the naturality of cup products and (0.4.1). The
composite of the bottom row agrees with Gyisy (G2). Thus we obtain the commutativ-

ity of the diagram (1.1.2), once we show the left triangle commutes. But this commuting
follows from (G3) and [SGAQ] Cycle 2.1.3. Indeed, by noting that

Rij,A(r+1)=0 forq>2,wherej:y— Z,
the left triangle is induced by the following squarelli(ze, A):

canonical

CRYA(r + 1)[—1]
i
A(r)[—1]

T<1 iR A(r + 1)
J{5'y°,°z(/1(7“+1)z)

Gys,, .
Ru A(r+ 1)[1],

whered“ : *R'j,A(r + 1) — A(r) denotes a map of sheaves o induced by the
valuation of A. We noteRi'A(r + 1)[1] is concentrated in degrée Therefore it suffices
to show its commutativity after taking the cohomology sheas#é5—) in degree 1, so
that we are reduced to showing the commutativity of the diagram

ERYA(r 4+ 1) ERYA(r + 1)
_@vall l(sgﬁw(m)z)
GysbI |
A(r) R, A(r+1),

where Gys : A(r) — R2%'A(r + 1) is given bya — clz(z) U a. By looking at the
stalks, we are now reduced to the case thas strictly henselian and to showing the
anti-commutativity of

K(y)*/n H'(y, A(1))
ordAl i&;fm(/l(?*l)z)
Gyst
A H2(Z, A(1)),

1r—>Clz($)

which is a consequence of [SG/23\]4CycIe 2.1.3 (! is the Kummer isomorphism). Note
that we have)*? = ord, o (h')~! by §0.6(1.1), and that Gys o ord4 sends a prime
elementr of A to cl(x) and hence agrees with the map induced the composition

R(y) = H}(Z,Gm) == H2(Z, A1)
by loc. cit. 2.1.2.
1.3. General case.We prove Theorem 1.1.1 in the case tlais not regular. Take the
normalizationf : T — Z. Note thatT is regular and semi-local and thatis finite by

the excellence of. The composite morphisth — Z — X is finite (hence projective
by [EGA2] 6.1.11), and factors & — P4 — X for some integet/ > 1. Let., be the
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composite mag — T — P4. PutY := f~!(x) C T with reduced subscheme structure,
which consists of closed points @h There is a commutative diagram of schemes

(1.3.2) ye—sr7 I p o
oL
=g

Leti, (resp.ix) be the closed immersion— X (resp.X — P). Now putd :=c+d =
codimz(Y'), and consider the diagram in Figure 1.

78valz
H Y (y, A(r + 1)) > - HY(X,A(r))

Gys, y o Gysi/

HY = (B, Ar + ) HE™ (B, A(r + )

895 (A(r + ')
@ a @3 8 @ tr,

5% (A(r + c))

HIP? "1 (X, A(r + ¢)) HEP (X, A(r + ¢))

Gys, ®) Gys;,

y Y

- Hi(z, A(r))

HT (y, A(r + 1))

val
_81/,1

FIGURE 1. A diagram for the proof in the general case

In the diagram, the arrows and are induced by the composite morphism

Ri',(trg)

v RERSA(r + )el2d] —> Ri Rg. A(r + ¢ )s[2d]

RZ'ZA(T + C)X

in Dt (Zg, A), where(x) is the cobase-change morphism (cf. [SGA4] XVI111.3.1.13.2) for
the right square of (1.3.1). More precisetyjs obtained by restricting to y, andj is
defined as the composite

B RhRiSA(r + )p2d) > RERERSA(G + )s2d) 22 REAGr + ) |

where (xx) is the cobase-change morphism for the left square of (1.3.1). Therefore the
square (3) is commutative by (0.4.1). On the other hand, the diagram (1) is commutative
by the regular caségl.2, and moreover, the outer large square of Figure 1 commutes by the
definition ofc‘)‘y’f"; (cf. §0.6 (I)) and the fact that the trace map toincides with the core-
striction map of Galois cohomology groups (cf. [SGA4] XVII1.2.9 (Var 4)). Therefore,
once we show that the diagrams (2) and (4) commute, we will have obtained the commu-
tativity of (5), i.e., Theorem 1.1.1. In what follows, we prove only the commutativity of
(4); the diagram (2) is simpler and left to the reader. Put

Q=P
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and take a sectiofi: X — P. Lett : z — () be the restriction of to x, and leti, (resp.
tx) be the closed immersial — P (resp.)’ — Q). Consider the following diagram:

Gys
(1.3.2) H(z, A(r)) — 2= HI¥2(X, A(r + ¢))
tr, .7
' Gys; (6) Gyssl
S Gys, ,, Gysi, 9/

HY(X, A(r)) —= HT4Q, A(r + d)) — HE™ (P, A(r + ¢))

try ” UQ/a ®) B’ l

L Gys,

H(x, A(r)) HIP(X, A(r +¢)) -

Here the square (6) commutes by (G2). The arfis a trace map defined in a similar
way as for. The diagram (4) in question is related to the large tetragon(8))in (1.3.2)
by a diagram

Gys;,,

(1.3.3) HY(X, A(r)) HEP (P, A(r + )

Gysix otry, \ i L2«
i (M+®) p

HTP2e(X A(r + ¢)) Hg;%’ (P, A(r +¢)) .

Here the arrowp denotes the composite of the middle row of (1.3.2), and the upper right
triangle of (1.3.3) is obviously commutative. The compositibno.ys, is 3, and the square
agrees with the diagram (4) in Figure 1. To prove the commutativity of (4), it thus suffices
to check that of the lower left triangle of (1.3.3), i.e., the tetragon-(&) in (1.3.2). To
prove this, it suffices to check the following claims concerning the diagram (1.3.2):

Lemma 1.3.4. (@) The triangle(7) is commutative.
(b) The composite of the right vertical column is the identity map.
(c) The composite of the middle vertical column is the identity map.
(d) We haveGys = Gys otry, i.e., the upper triangle of1.3.2)commutes.

The claims (a)—(c) follow from standard arguments using [S§AGycle 2.3.8 (i), (ii).
The details are straight-forward and left to the reader. We prove ).shbelow.

Remark 1.3.5. By the absolute purity and the clair(ts) and(c), one can easily show the
commutativity of the squaK®). However the clainfd) enables us to show the commuta-
tivity of the large tetragor{7)+(8) without the absolute purity.

1.4. Proof of Lemma 1.3.4(d). To prove Lemma 1.3.4(d), it is enough to show the
following lemma:

Lemma 1.4.1.Let F be a field, letd be a positive integer and p@ := P%. Letn be a
positive integer prime teh(F') and putA := Z/n. Leti, : + — @ andi, : y — @ be
closed points o) with x(x) = F, and letf : y — SpecF') be the natural map. Then
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for integersq, » > 0, the following diagram commutes

H(y, A(r)) ——= Hi(z, A(r))
i@%

HIP24(Q, A(r + d))

Gys;

Y

Proof. Because the case= y is obvious, we suppose thatindy are distinct points. Put
L := k(y).

(i) First assume thak /F' is separable. In this casgjs a closed point on some linear
subspace of) of dimensionl. Because any twd-rational points on) are linearly
equivalent, we may assume that= PL. Then there is a direct decomposition

HT2(Q, A(r +1)) == HY(F, A(r)) @ HI?(z, A(r + 1))

sendinga € H"(Q, A(r + 1)) to (trg,r(a),i:(a)) (cf. Lemma 1.3.4(c)). In view of
Lemma 1.3.4 (a), our task is to show that the following composite map is zero:

(1.4.2) Ho(y, A(r)) —% HI2(Q, A(r + 1)) —> H™ (2, A(r + 1)) .

We prove this claim. Indeed, Gysfactors throughH{*2(Q, A(r + 1)) andi;; factors
throughH7"2(Q~y, A(r+1)). Hence (1.4.2) is the zero map and we obtain the assertion.

(i) In the case that./F is inseparable, lef” be the perfection o, let K be the
separable closure df in L, and putk’ := K ®p F', Q' := Q ®r F'; K' is a perfect
field andl' := L @ F' is afinite localK’-algebra with residue fiel&”. Letu (resp.v)
be the projectior)’ — (@ (resp. Sped”’) — Spe¢F')). By a standard norm and limit
argument, it is enough to show the commutativity of a diagram

H(z, A(r)) ——2

H (2!, A(r))
lu* (clg(x))u?
HT24(Q', Alr + d)).

u*(clg(y))u?

Herez is the closed point of/ := y ®p F' = Spe¢L’), we putz’ := z @ F’, and we
identified H%(z, A(r)) with H4(y', A(r)) by the restriction foe — ¢'. We compute these
maps. The map*(try) agrees witHL : K] - tr. ., (cf. [SGA4] XVIII.2.9). On the other
hand, we have

u*(clg(y)) =clg/(z; L) =[L: K] -clg(z) and u*(clg(z)) = clg (2)
by [SGA4%] Cycle 2.3.8 (i), (i), where ¢}, (z; L") denotes the cycle class with coefficients
(see loc. cit.). Hence the above diagram commutes by the separable case. O

This completes the proof of Theorem 1.1.1.



16 U. JANNSEN, S. SAITO AND K. SATO

1.5. Bloch-Ogus complexes and Kato complexesNe use Theorem 1.1.1 to identify

the Kato complexes with those defined via the method of Bloch and Ogus. Keep the
assumptions as in the beginning is a noetherian excellemegular scheme,n is a
positive integer invertible oiX', andZ/n(q) (¢ € Z) is theg-fold Tate twist of theétale
sheafZ/n on X or X-schemes. Assume that is of pure dimensior, and thatZ C X

is a closed subscheme. By the method of Bloch and Ogus [BO], there is a niveau spectral
sequence

(1.5.1) EL(Z/X,Z/n(b) = P H, (X, Z/n(-b)) = H;* (X, Z/n(-D))
.Z’EZ.S
obtained by filtering with respect to the dimension of support. More precisely, it is the
niveau spectral sequence anh(cf. [BO] (3.7) and [JS] 2.7), for the homology theory
which is defined on all subschemE&son X by
Ho(V/X, Z/n(b)) := Hy* (U, Z/n(=b)),
if V is a closed subscheme of an open subschénie X. By definition,
Ha(cL(XJ Z/n<_b)) = hm Hf{l }ﬂU<U7 Z/n(_b)) )

xEUCX
where the limit is taken over all open subsEts- X containingz. SinceX is excellent,
{z} is excellent as well, and hence there is an opgsuch that{x} N U is regular for
U C Uy. For suchU, by absolute purity [FG], one has a Gysin isomorphism for the closed
immersioniy : {z} NU — U

Gys,, : H* " *'({a} NU.Z/n(s — d = b)) = H " (U, Z/n(~D))

for x € X, i.e., of codimensiond — s in X. Hence we get an isomorphism
(1.5.2) E(Z/X.Z/n(b) = @ H™' " (k(x),Z/n(s —d —b)).

re€Xs
For a complex of abelian grougs* denote by(C*)(~) the complex with the same com-
ponents, but with the differentials multiplied byl.

Theorem 1.5.3.The Bloch-Ogus complek;,(Z/X,Z/n(b)) coincides with the sign-
modified Kato complex'-*=24=4-%(7)(=) via the Gysin isomorphisn{&.5.2)

Proof. By definition of the spectral sequence (1.5.1) ditdifferentials have the compo-
nents
Ope - H (X, Z/n(=b)) — H*H 17X, Z/n(-D))

fory € X, andx € Xs_l with z € {y} (cf. [JS] Remarks 2.8). Therefore the claim
directly follows from Theorem 1.1.1. O

Remark 1.5.4. For Z = X it is often customary in literature to renumber the spectral
sequencél.5.1)into a cohomological coniveau spectral seque(with c = —b)

EY(X,Z/n(c) = @ H""(k(x),Z/n(c - p)) = H"" (X, Z/n(c)).

reXP
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This does not change the differentials, and sofheéerms compare in a similar way to
the Kato complexes. More precisely one obtains that?(X,Z/n(c)) coincides with
Cg—d,c—d(X)(—).

By this method, we only get Bloch-Ogus complexes for schehesich can be glob-
ally embedded in a regular scheme But the following slight variant covers all the
cases considered in [JS] (of course, still under the assumption thatvertible on these
schemes).

Let S be a noetherian excellent regular base scheme of pure dimedslethn be
invertible onS, and leth be an integer. Similarly as i§0.3 we define a homology theory
(inthe sense of [JS] 2.1) for all separatedchemes of finite typ¢ : X — S by defining

H,(X/S,Z/n(b)) := H (X, Rf'Z/n(-b)) .
Then one gets a niveau spectral sequence
(15.5)  EL(X/S,Z/n(b) @ Hoi(2/S.Z/n(b) = Hoyi(X/S.Z/n(b))

where H,(x/S,Z/n(b)) is defined as the inductive limit ofl,(V//S,Z/n(b)) over all

non-empty open subschemésc {z}. Since{z}, being of finite type oves, is again
excellent, there is a non-empty open suligetvhich is regular. Then, for all non-empty
openV C Vj one has a canonical purity isomorphism

(1.5.6) H,(V/S,Z/n(b)) = H**=D=9(V,Z/n(s —d — b)),

wheres = dim(V') is the dimension aof,, by the construction in [FG] p. 157. This induces
an isomorphism

(1.5.7) ELl(X/S,Z/n(b) = @ H ' (2,Z/n(s — b - d))

The following theorem generalizes Theorem 1.5.3 (which is the &aseS5).

Theorem 1.5.8.The Bloch-Ogus complek ,(X/S,Z/n(b)) coincides with the sign-
modified Kato comple&’; *~2%~t=4(X)(=) via the isomorphismél.5.7)

Proof. The question is local oX andS. Thus we can assume that there is a factorization
f = poi, wherep : P — S is a smooth morphism of relative dimension (e.g.,

P =AY)andi: X — Pis a closed immersion. Then there is a canonical isomorphism
from Poincaé duality ([SGA4] XVIII 3.2.5)

Rp'Z/n(—b) = Z/n(N — b)[2N],
which induces an isomorphism

H,(X/S,Z/n(b)) = H~*(X, Rf'Z/n(~b))
~ ™%X, Ri'Z/n(N — b)[2N]) = H¥"*(P,Z/n(N — b)) .
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Similarly, for a locally closed subsét C P, say a closed immersio : V' — U with
ju : U — P open, there is an isomorphism

Ho(V/S,Z{n(b)) = H™*(V. R(f o ju o iv)'Z/n(~b))
(1.5.9) >~ H~*(V, R(iy)'Z/n(N — b)[2N])
= HXN""(U,Z/n(N —b)).
Moreover, this is compatible with localization sequence$’ i§ regular and of dimension
s (hence of codimensiod+ N — s in P), then by definition, the isomorphism (1.5.2) is
the composition of this map with the inverse of the Gysin isomorphism
Gys, : H* >V, Z/n(s — d — b)) => HN (U, Z/n(N —b)).

This shows the following: Via the maps (1.5.9), we get an isomorphism between the
homology theoryH,.(—/S,Z/n(+")), restricted to subschemes &f, and the homology
theoryH,_on(—/P,Z/n(+¥'+ N)) from (1.5.1), restricted to subschemesgfand there-

fore an isomorphism of the corresponding spectral sequence. Moreover, via this isomor-
phisms, the isomorphisms (1.5.2) and (1.5.7) correspond. Therefore the claim follows
from Theorem 1.5.3. O
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2. THE CASE OFp-TORSION OVER A PERFECT FIELD OF CHARACTERISTI@

Throughout this sectiork always denotes a perfect field of positive characteristic
andn denotes a positive integer. We will often writdor Speck).
2.1. Gros’ Gysin map. Let us recall that Gros has defined Gysin morphisms
Gys; : REWL QY 10, — WL QY T[]

for any proper morphisnf : Y — X of smooth equidimensional varieties ovemwhere
¢ = dim(X) — dim(Y") ([Gr] Il.1). These induce maps

GySf : HQ(Y" VV;IQ;/,Iog> - Hq+C(X7 WLQTXJ’,_l%g) :
If i : Y — X is a closed immersion of smookhschemes, it also induces Gysin maps
Gysi : H(I(Y, I/I/TlerY,log) - H;1/+C<X7 VVTLQTXJ,FICog> )

wherec is now the codimension of in X. The following result is g-analogue of
Theorem 1.1.1, cf. Remark 2.5.5.

Theorem 2.1.1.Let X be a smooth variety ovér. Letn andc be positive integers. Let
i, : x — X andi, : y — X be points onX of codimensior: andc — 1, respectively,

with z € {y}. Then the following diagram commutes

(—1)7 o

HO(y, W, Qr ety

y,log
oy, l

Hgil (X7 Wl QrX,log)

HO(z, W, Q7.¢)

z,log

HJCJ(X7 M/’;l QrX,log) :

61,(1)7(:7“ (m Qg(,log)

In [Sh] 5.4, Shiho proved this compatibility property assuming: 1, but in a more
general situation. The proof of Theorem 2.1.1 given below relies on the following prop-
erties of the Gysin maps:

(P1) Local description of Gysin maps. See [Gr] 11.3.3.9, but we will only need the case
of a regular prime divisors, where one can give a simpler proof.

(P2) Transitivity of Gysin maps [Gr] 11.2.1.1.

(P3) For a finite maph : = — x of spectra of fields which are finitely generated over
k, the Gysin map Gys: H°(z, W,,,,) — H°(z, W,Q,,,) agrees with the
corestriction map (0.6.2), cf. Lemma A.1.1 in the appendix.

To prove the theorem, replacing with Spe¢0x ), we suppose thak is local with

closed pointz. The proof proceeds in three steps, which will be finishegid below.

2.2. Divisor case. We first prove Theorem 2.1.1 assuming: 1. Inthis caseA := O,
is a discrete valuation ring. Letbe a prime element of, and putK := Frad A) = x(y)
andF := x(z). By the Bloch-Gabber-Kato theorem [BK] 2.1, the gratif(y, W, ,..)
is generated by elements of the forms

(i) dlog(f.)- --- -dlog(fr) and (i) dlog(x) - dlog(f1) - --- - dlog(fr—1),
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where eacly; belongs toA*, and fora € A, a € W,,(A) denotes its Teichiiller repre-
sentative. The diagram in question commutes for elements of the form (i) obviously. We
consider the element

o = dlog(m) - dlog(f1) - - - dlog(f,—1)
with eachf; € A*, in what follows. By [CTSS] p. 779 Lemma 2, we have
Q5 /W Q¢ 1og = WL QY /dV™ Ot

which is a finitely successive extension of (locally) frde-modules by [1ll] 1.3.9. Hence
the natural map

0+ Hy(X, W, Wy 1) — Ho (X, W, Yy)
is injective, and our task is to show the equality
(2.2.1) (—1)" (20 Gys, 0 %) (@) = (00 0,5 (W Qy 1)) ()
in HX(X, W, Q%). We regard the complex

as arepresentative &f",. (X, W, Q% ), wherell;, 07} is placed in degre, cf. [Gr] 11.3.3.3.
This identification induces an isomorphism

s Wo Qe /Wi Oy = Hp (X, W, ).
Now consider a commutative diagram

w — -dlog(m) )x natural projection

W, S

W05

ovs,, 8195 (W 24
HO (2, W) % i (W) <) oy W)

(©)] Qj 4 j
Gys;, 5IOCL(WL b log)

HYAX, W o) < HO(y, W, Qr

Y, log)

W, /W, €, <

HO (2, W, Q1)

z,log

where forw € W, Q%1 & € W, Q! denotes a lift ofv. The square (1) commutes by
the property (P1) mentioned before. The square (2) commutes by a simple (but careful)
computation of boundary maps, cf. [Sh] p. 612. By these commutative squares we have

RHS of (2.2.1)= (=1)""" (00 6.5 (W, Qx 10¢)) (dlOg(f1) - - -+ - dlog(fr—1) - dlog(z))
2 (=) (ORS (W %)) (dlog(fy) - -+ - - dlog(f,4) - dlog(x))
@D (1) Gy (dlog(gy) - -+ - dlog(g.—1)) & LHS of (2.2.1)

whereg; € W, (F)* denotes the residue class fffor eachj. We thus obtain Theorem
2.1.1in the case = 1. o
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2.3. Regular case.We next treat the case thats arbitrary but the closurg := {y} c
X isreqgular. Let, : x — Z andi : Z — X be the natural closed immersions. Let us
consider the following diagram:

Gysiu
]_IO(y7 WlQT—C—‘rl) L qufl(X’ WlQ;{,log)

y,log

(~1)r o
/ J/(_l)c—l(s 5';};({/[[” Q;{,log)

Ho(xamQr_c)ﬁH;<vaQijlg-g‘_1) Gys, H;<X7WLQTX,10g)a

z,log

where we pub = 5;0,2(1/% Qg;ggl) for simplicity. The right upper arrow and the right
lower arrow are induced by the Gysin morphism fpso the right square commutes by
(0.4.1). The left triangle commutes by the previous case. The composite of the bottom

row coincides with Gys by (P2). Hence the assertion follows in this case.

2.4. General case.We finally consider the general case. The arguments here proceed
similarly as for§1.3. LetZ = @ C X be as in the previous step. We assume fhat

is not regular. Take the normalizatigh: 7' — Z. Note thatT" is regular and semi-local

and thatv is finite by the excellence of. Since a finite morphism is projective ([EGA2]
6.1.11), the maff’ — X factors asl’ — P — X for some integee > 1. Let., be

the composite map — 7" — PS. PutX := f~(x) C T with the reduced subscheme
structure, i.e., the scheme consisting of the closed poinfs.ofhere is a commutative
diagram of schemes

(2.4.1) yC TP =Py
hl fi gi
R = &

Leti, (resp.ix) be the closed immersion— X (resp.X — P). Now putc’ :=c+e =
codimz(Y'), and consider the diagram in Figure 2. The square (3) commutes by (0.4.1).

0 r—c+1 (—]_)T 8?\:67“2 0 r—c
H (y7VV’7ny,log ) . H (27WLQZJO€)

Gysby 1) Gysi/

Hy = (P, W 0315, - HS(P, WA 55E)

RGN ’
(2 Gys, 3) Gys, (C)] Gys,

c—1 T 65’%(% QTX’ng) c T

Hy (X, WlQX,log) - Hi(X, VVnQX,log)
Gys, ©) Gys, ,

Ho(y, m QT*CJrl)

y,log

= H (2, Wh Q05,)

(-1 o,
FIGURE 2. A diagram for the proof of the general case

Moreover, the diagrams (2) and (4) commute by the transitivity property (P2). On the
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other hand, the diagram (1) is commutative by the result in the previous case. Finally,
the outer large square of Figure 2 commutes by Lemma A.1.1 in the appendix and the
definition of 0¥, cf. §0.6 (II). Thus the diagram (5) commutes, i.e., Theorem 2.1.1]

Y,x?
Corollary 2.4.1. Let X be a smooth variety of pure dimensidrover k, and letc be a
positive integer. Let, : © — X andi, : y — X be points onX of codimensior and
c — 1, respectively, witlr € {y}. Then the following diagram commutes

. (-1 o, -
Hl(y7 WLQZ,Iongl) - Hl(‘r7 mﬂilog)
Gys;, l lesiw

65707“ (m Qg(,log)

H;(X7 WLQSI(,IOg) H:i—H (X7 WlQSl(,log) :

Proof. First of all we note thajx(z) : x(x)?] = p?~¢, because:(x) has transcendence
degreed — c over the perfect field. Therefore the upper map is well-defined. For the
prove of the corollary we just have to consider the case 1. In fact, the reduction to
this case works as i§2.3 and§2.4 for Theorem 2.1.1; we only have to consider the case
n = ¢, and to raise the degrees of all cohomology groups$.blyurthermore we have to
replace Lemma A.1.1 by Lemma A.2.8.

In the case: = 1 we again may replac& by the spectrum of the discrete valuation
ring A = Ox .. By the definition of Kato’s residue maps (0.6 (1)), and since

HJ%(Xv WlQi(,log) — Hz(th WlQSl(h,log)

for the henselizationX" of X at z, we may furthermore replac& by X". Theny =
Spe¢K) for a henselian discrete valuation field with residue fieldx(z). Lety =

Spe¢K*"), where K" is the strict henselization ok. Putz := Specx(z)) for the

separable closure(x) of x(z). Then we get a diagram in Figure 3.

(—l)d aval

Hl(y7VVFLQZ,log) > Hl(I,Mﬂgz(}g)
N 1) b~
H' (z, H(y', W Q5 165)) ~ H'(z, H(z, W, 27 ,,)
¥,l08 (71)d aval o108
(2 (3) H'(z,Gys) 4 Gys
| d
1 0, d HY o, 89000 % g) 1 1/ysh d
H (I7H (y 7Wle,log)) H (mvHT(X ’WIQXJOg))
% ©) \ |
H'(y, Wa Q5 - H2(X, W, Q% 10
(y y,L g) 5|OC(WL le(’log) ( X, 1 g)

FIGURE 3. A diagram for the proof of Corollary 2.4.1

Here the isomorphisms b andc come from Hochschild-Serre spectral sequences for the
pro-etale covering{s" — X (= X™M) given by the strict henselization of. See§0.6 (1.3)
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for « andb, and note the isomorphism

HEN (X W, Q% 10p) = H (T, W,Q40) (= 0 for i # 0)

z,log

for ¢, cf. [Mo] Corollary to 2.4. Then the diagram (1) commutes by the definition of
Kato’s residue maps. The diagram (2) commutes trivially, and the diagrams (4) and (5)
commute, because the vertical maps and the two lower horizontal maps are induced by
morphisms of sheaves (Gys afi?f), and hence are compatible with the Hochschild-Serre
spectral sequence. Finally, it follows from Theorem 2.1.1 that the square (3) commutes.
This implies the commutativity of the outer square and hence the corollary. O

2.5. The complex.#,; 5. Building on work of Moser [Mo], and motivated by Theorem
2.1.1, we introduce a complex éfale sheaves and prove a duality result for it {2f6
below).

Definition 2.5.1. Let X be a scheme of finite type over For a pointz on X, leti, be
the canonical map — X. We define the comple®;  of étale sheaves oN as

o= ({@eex ., M, } o {-01,).

whered? has the componen@ﬂ withy € X_, andx € X_,_; (cf. §0.6). We often write
My, x for the image of Z;  in D*(X¢, Z/p"). See Remark 2.5.5 below for the reason of
the sign of the differentials.

The complex#; - coincides with the complex, x defined in [Mo] up to signs of
boundary operators and a shift. X is smooth overs of pure dimension/, then, by
a theorem of Gros and Suwa [GrSu], the embedding ,,, — D, cx, o+Wn U 10
induces a canonical quasi-isomorphism

(2.5.2) Wa S ogld] 5 7

Note also the following simple facts: For a closed immersior¥ — X of schemes of
finite type overs, there is a natural map of complexes

(2.5.3) Gl — Moy

If X andZ are smooth of pure dimensiehandd’, respectively, then this map induces a
morphism

(254) Gy$ : i*mgg,log[d/] - VVTLQ?(,]og[d] in Db<Xéta Z/pn>
via (2.5.2) forX andZ, which we call thenodified Gysin morphisfior ;.

Remark 2.5.5. The reason we put the signl on the differentials of#;  is as follows.
Because of these signs, the modified Gysin @ap.4) agrees with Gros Gysin map
Gys only up to the sign—1)?~%, cf. [Sa] 2.3.1 However by this fact, if we define
Z[p"(r) = W, Q% ,,,[—7] for (essentially smooth scheme¥ overk and note property
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(0.4.1) Theoren®.1.1for » = d and Corollary2.4.1become a commutative diagram

__gval
Y,z

H™(, Z/p"(d — ¢))
=

H (X, Z/p"(d)) -

H™=+(y, Z/p"(d — ¢ + 1))
Gys’

Ly J/

e ., 8¢, (2,/p" (d)
Hy e (X, Z/p"(d))

Note that the groups in the top row are only non-zeroifor= d, d + 1. This shows the
perfect analogy with Theorefinl.1

The following lemma shows that the compleX?  is suitable for conomological opera-
tions:
Lemma 2.5.6.Letz be a point onX of dimensiory > 0. Then

(1) The sheail], Q! onuzgisi,.-acyclic.

z,log

(2) For a closed immersion: Z — X, the sheaf,,1¥,Q? , _on Xg isi'-acyclic.

z,log

(3) For ans-morphismf : X — Y, the sheaf,. 11, Q%, on Xgis f.-acyclic.

z,log

Proof. For (1) and (2), see [Mo] 2.3 and 2.4. We prove (3). For a pgiatY’, we have
(R™ fuliwW0 Q2 1op)), = H™(X Xy SPedoayy), iz Wi Y )

z,log z,log

1)
=~ H™(z xy Spe¢osy), W, Q)

z,log

and the last group is zero fat > 0 by the same argument as in loc. cit. 2.5. OJ
Corollary 2.5.7 (cf. [Mo] Corollary to Theorem 2.4)For a closed immersion: Z — X,
the map(2.5.3)induces an isomorphism

GYS : My == Ri'Myx in DY (Zet, Z/p").

2.6. Relative duality theory. Let 7, be the category of schemes separated of finite type
overs and separategkmorphisms of finite type.

Theorem 2.6.1.Suppose that there exists an assignment of morphisms
Tr:(f:Y —=Xin%)— (Try: Rfitny — M, x in D+(X'et, Z/p"))
which satisfy the following three conditio(i$— (iii):
(i) If fis étale, therlr, agrees with the composite morphism
Rfutlyy = REf My x 2

where the arrowf, denotes the adjunction morphisRY, f* = RfiRf' — id (cf.
[SGA4] XVIIL.3).
(i) If fis a closed immersion, thélr; agrees with the composite morphism

Rf.(Gys})

Rf*%n,Y Rf*Rf!%n,X L> %’nﬂX )
where the arrowf, denotes the adjunction morphisRy, Rf' = RfiRf' — id.
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(i) For morphismgy : Z — Y andf : Y — X with h := f o g, Tr, agrees with the
composition

Rf} (Trg ) Tl’f

Rf!%n,Y - %n,X .

Rh!=%n,Z = Rf!Rg!%n,Z

Then for amagf : Y — X in ¥, the adjoint morphisrr/ of Tr; is an isomorphism
Trf : '%TL,Y — Rf!%n,X in D+(}/ét7 Z/pn)'

This theorem is a variant of Moser’s duality [Mo] 5.6 (which itself generalizes Milne’s
duality for smooth projective varieties [Mi3]). However, because Theorem 2.6.1 looks
quite different from Moser’s formulation, we outline a proof of our statement below in
§2.7. The main result of this section is the following theorem:

Theorem 2.6.2.There exists a unique assignment of morphisms
tr . (f Y — Xin %) — (trf . Rf!%ny — //n,x in D+(Xét, Z/pn))

that satisfies the condition(§) — (iii) in Theorem2.6.1with Tr := tr. Consequently, for
amapf : Y — X in ¥, the morphismtr’ : #,y — Rf'#,x adjoint totr; is an
isomorphism.

We will prove Theorem 2.6.2 if§2.8—2.9 below.

2.7. Proof of Theorem 2.6.1.By the transitivity property (iii) of Tr, the assertion is
reduced to the case of a structure morphjsmX — s, and moreover, by the property (i)
of Tr, we may suppose that= s (i.e., k is algebraically closed) and thgtis proper. In
this situation, we claim the following:

Theorem 2.7.1.Let X be a proper scheme of finite type over the algebraically closed
field k& of characteristigp > 0, with structural morphisnyf : X — Speck). Then, for any
constructibleZ /p"-sheaf# on X and any integern, the pairing

ax(m, F): H"(X, F) x EXQY (T, My x) — H(X, M)~ Z/p"

induced by Yoneda pairing is a non-degenerate pairing of finite groups.

We first prove Theorem 2.6.1, admitting Theorem 2.7.1: Applying 2.7.%to=
JZ/p" with j : U — X étale, and noting the isomorphisms

EXt;(?%/pn (j' Z/pn7 %H,X) = EXt&TZﬁ/pn (Z/pn’ ‘%TL,U) = Him(UJ 'ﬂn,U) )

we obtain isomorphisms

a b
H™"™(U, M) = HOMg jyn mod H™ (X, i Z/p"), Z/p") = H™™(U, Rg'Z/p")

foranym € Z, whereg = f o j, the first isomorphism comes from the pairing, and
the second isomorphism comes from the adjunction betwagrand Rg, and the fact
thatZ/p™ is an injective object in the category @f/p"-modules. We verify that this
composite map agrees with that coming from F+ then the morphism Tris bijective

on cohomology sheaves, and we obtain Theorem 2.6.1. Indeed, by the definition of the
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pairing, the mam sendse € H™"(U, M, y) = HOMp(x 2/pm) (1 Z/D", A x [—m]) tO
the composition

H™(X, JZ/p") = HO(X, My x) = HO(5, Rftly x) ~5 Tfp",
which, by 2.6.1 (i) and (iii), coincides with the map induced by

Rg/Z/p"™|m] LN Ro A, s, Z/p".

By definition (and functoriality of adjunction), the mé&sends this to the composition
Z/p"[m] <> Moy~ RGZ/p",
which shows the claim, again by 2.6.1 (i) and (iii). O

As for Theorem 2.7.1, it follows from the arguments in [Mo] 5.6. More precisely, it
follows from the properties (i) —(iii) of Tr, the steps (a)—(c), (f) — (k) of loc. cit. 5.6, and
the following lemma:

Lemma 2.7.2.Let f : X — s(= 3) be a proper smooth morphism wiffi connected.
Then for an integem and a positive integer < r, the pairingax (m, Z/p") (cf. Theorem
2.7.1)is a non-degenerate pairing of finite groups.

Proof of Lemma 2.7.2The problem is reduced to the case- r by (2.5.2) and [Mo]

5.4. Now we note that Milne duality [Mi3] 1.11 gives an isomorphism of finite groups
in our case, because, with the notation of [Mi3] p. 305, there are no unipotent parts in
the cohomology of the complex of perfect group scheiésX,Z/p™). Therefore it is
enough to show that the composite map

T« HY(X, W, Q% 1og) °2? HY(X, My ) L 2 )p"
with d := dim(X) coincides with the trace map, in [Mi3] p. 308, up to a sign. But, for
a closed point, : z — X, Tr} sends the cycle class Gy§l) € H*(X,W,Q%,,,) (=the
image ofl under Gy$ ) to 1 by the properties (ii), (iii) of Tr, and hence’f'ﬂ: (—1)%n, by
Remark 2.5.5(1). This completes the proof of Lemma 2.7.2, Theorem 2.7.1 and Theorem
2.6.1. O

Remark 2.7.3. Note that stegj) of [Mo] 5.6 uses de Jong’s alteration theordd] 4.1

Corollary 2.7.4. Suppose that there exist two assignmentsf — o, andr : f — 7
satisfying(i) — (iii) in Theorem2.6.1with Tr := ¢ and 7, respectively. Then we have
g =T.

Proof. Let f : Y — X be a morphism in#;. We show thatr; = 7, as morphisms
RfiMyy — My x In DT (Xe, Z/p™), in two steps. We first prove the caie= s (hence
M, x = Z/p"). By the properties (i) and (i), we may suppose tlfas proper. Then
Rfitl,y = Rf..#,y is computed by the complex..#;, by Lemma 2.5.6(3), and
the morphismss; and 7, are determined by mapﬁ//r?y — Z/p™ of sheaves oMy

by §0.5.4 (1). Hence in view of the properties (ii) and (iii) and the assumptionstieat
perfect, the problem is reduced to the case wifeigétale, and we obtaia; = 7, by
the property (i). This completes the first step. Next we prove the general case’ Let
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andr/ be the adjoint morphisms ef; andr;, respectively. By adjunction, it is enough
to showo/ = 7/ as morphisms#,,y — Rf'.#, x in D™ (Ye, Z/p"). Letg : X — s be
the structure map and pat:= g o f. By the first step and the property (iii), we have

Rf'(0c%) oc! =o"=1"=Rf'(r9) 07!

as morphisms#,, y — Rh'Z/p". On the other hand, we havef'(c?) = Rf'(r9) by
the first step, and these are isomorphismB®in Yz, Z/p™) by Theorem 2.6.1. Hence we
haveo/ = 7/. This completes the proof of Corollary 2.7.4. O

2.8. Covariant functoriality. In this subsection, we prove Lemma 2.8.2 stated below
(cf.[Mo] 4.1), which is a key ingredient of Theorem 2.6.2. lfetY — X be a morphism

in 7,. Letq be a non-negative integer and le{resp.y) be a point onX (resp. onY’) of
dimensiong. Let f, (resp.i,) be the composite map — ¥ — X (resp.x — X). We
define a map of sheaves ofy

trf?(yva;) : fy*WLQq - ZI*WLQ(I

y,log z,log

as Gros’ Gysin map foy — = ([Gr] 1.1.2.7), if y is finite overz via f. We define tf , .
as zero otherwise. Collecting this map for pointstoand X', we obtain a map ojraded
abelian sheavesn X

s fodlyy — M3 x .
By definition and [Gr] 11.2.1.1, this map of graded sheaves satisfies transitivity, that is, for
morphismgy; : Z — Y andf : Y — X in ¥, we have the equality

(2.8.1) thoo fu(try) =tr5,,
of maps of graded sheaves Bg. We prove the following lemma:

Lemma 2.8.2. Suppose thaf is proper. Thertr} is a map of complexes. Consequently,
tr$ induces a morphism

try: Rty — Myx in D'(Xer, Z/p")
by Lemma&.5.6 (3)

Proof. Let ¢ be a negative integer, and lelandx be points onX of dimension—¢ and
—q — 1, respectively. Our task is to show the commutativity of a diagram

g D, 02, g1
q y 2w Gw,y q
(2.8.3) @ FurWn 2y o @ Fyp Wt g
weY_nf-1({z}) yeY_q_1nf-1({z})
> ”ﬁ(w@l izy s (y,0)
) _ oY%, . o1
Zz*Wlefog ZJ?*WlQac,lllog )

where {z} and {z} denote the closure of andw in X, respectively. Ifz does not
specialize tar, then both horizontal maps are zero and the diagram commutes. In what



28 U. JANNSEN, S. SAITO AND K. SATO

follows, we assume thatspecializes ta. LetT" be the localization oz} atz, and let
w be a pointort” with w € Y_, N f~'({z}). Put

Zyy = {w} xx T(= {w}n fHT)),

where{w} denotes the closure ofin Y, regarded as ak’-scheme vigf. If y € Y_,1N

f1({z}) is away fromZ,, theny is outside of{w} N f~'(z) and hence at least one

of 9y and tr; (. is zero. Thus the commutativity of (2.8.3) is reduced to that of the

following diagram:

L 08, -
(2.8.4) FuVa 08, &b Lo
yEY_q_lﬂZw
tr
fi(w,2)
lzy Ao
oval 1
. —q zZ,r . —q—
QLT i W 0

Note that there happen only the following three cases:

(1) Z, is empty (i.e.0 maps to a point oz} outside of7’).
(2) w maps tar.
(3) w maps toz.

In the case (1), the problem is obvious, because the upper right sheaf and the left vertical
map are trivial by definition. Therefore, we restrict our attention to the cases (2) and (3),
in what follows. Note thatZ,, is integral with generic pointy in these cases. We claim
here the following:

Claim. (a) In the casd?2), Z,, is a proper curve over.
(b) In the casd3), the canonical morphisnfir : Z,, — T is finite.
(c) In both cases, the sét ,_; N Z,, agrees with the set of all closed points 8.

Proof of Claim.(a) SinceZ,, is proper over: by the properness df, it suffices to show
that Z,, is one-dimensional. This follows from [Ha] 111.9.6.

(b) By Zariski's Main Theorem (see e.g., [Mil] I.1.10) and the propernesf-pft
suffices to show thafr is quasi-finite. Note that(w) is a finite field extension of(z).
Letv : U — T be the normalization df' in x(w). Thenv is finite (cf. [Ha] 1.3.9A) and
U is the spectrum of a Dedekind ring, which imply thafactors as/ — Z,, — T by
the valuative criterion for proper morphisms (cf. loc. cit. 11.4.7). Here the biap 7,
is surjective, because it is proper and dominant. Hefds quasi-finite by the finiteness
of v and we obtain the assertion.

(c) immediately follows from the description &f, in (a) and (b). O

We turn to the proof of Lemma 2.8.2 and prove the commutativity of (2.8.4). We first
consider the case (3). Recall that is then finite ovefl” by Claim (b). Since the problem
is étale local atr € T', we assume thaf andZ,, are strictly henselian by replacing them
with Spe¢£3) and a connected component 6f, x, Spe¢os?,), respectively. Then
by the Bloch-Gabber-Kato theorem ([BK] 2.1) and Lemma A.1.1 in the appendix, we are
reduced to the commutativity of residue maps of Mildorgroups §0.6 (1.2)) via norm
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maps due to Kato [Ka2], Lemma 3 (which assumes the domains concerned are normal,
but is easily generalized to our situation by a standard argument using normalization):

KM (s(w) /"~ @ KM (5()) "

Y€(Zw)o

NN w K(Z
(/e \Lzy Ne(y)/r(2)
. .
KM (5(2)) /p" KM (5()/p"
Hence (2.8.4) commutes in this case.

Finally we prove the commutativity of (2.8.4) in the case (2). In this case, the map
try (w2 iS zero by definition, and our task is to show that the composite of the top horizon-
tal arrow and the right vertical arrow is zero. Moreover,@&gim (a) and Lemma A.1.1,
we are reduced to the case that is a projective line ovet. The assertion then follows
from Claimin the proof of Lemma A.1.1. This completes the proof of Lemma 2.8[2.

Remark 2.8.5.If f is finite andétale, thertr} coincides with the adjunction map

fe: f**ﬂr:,Y = f*f*%nf,x - J,X-
Indeed, the claim is reduced to the case of a finite separable extension of a point, which
follows from a standard base-change argument fvid] V.1.12.

2.9. Proof of Theorem 2.6.2. By Corollary 2.7.4, it remains to show the existence of a
desired assignment. For a mép Y — X in 7, we define the morphism tias follows.

If f is proper, then we definestias that constructed in Lemma 2.8.2. Next suppose that
f is not proper. Take a compactification ffi.e., an open immersiof: Y — Z and a
proper mapy : Z — X with f = g o j, and define yr(ng as the composite morphism

(2.9.1) (250 : Rfitlny = Rg.Rjij* My 7 > Ryl ~ My x
where the arrowj is defined by the adjunction morphisRy,j*.#,, , — 4., . We are
going to define
tl'f = trf7(Z,j,g) .
To verify the well-definedness, it suffices to show the following:

Lemma 2.9.2.LetY <% V % X be another compactification gt Then we have

Wy (2.9 = Urvion) -

Proof. ReplacingZ by the closure of the image of o) 7 X x V, we may suppose

that there exists a proper morphism Z — V fitting into a commutative diagram with
cartesian square

YCL)Z

N

Y sy X
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Since ty, = tr, o Rh,(tr,) by (2.8.1) and Lemma 2.5.6 (3), it remains to show thattr .
agrees with the adjunction morphism

0 1 oMyy = 010" Myy — My .

Indeed, sincer™'(Y) =Y, o*(tr,(z,)) is the identity morphism of#, y (cf. (2.9.1)),
which implies that tg 7 ; ») = o1. This completes the proof of the lemma. O

Thus we obtained a well-defined assignmént- tr;,. We show that this satisfies the
conditions (i)—(iii) in Theorem 2.6.1. The condition (ii) holds obviously by definition (cf.
(2.5.3),52.8). We next show the condition (i). Suppose tfiaty” — X is étale. Take an
open immersion : Y — Z and a finite mag : Z — X with f = g o 5 (cf. [Mil1] 1.8).
We claim that the morphism gty ; .y coincides with the adjunctiofi, which implies (i).
Indeed, sincef is étale andy is finite, tr; 4 ; ) iS represented by the composite map of
complexes

g9+ (1) trg .
f' nY_g*j'j nZHg nZH'%nX7

which agrees withyf; by a similar argument as for Remark 2.8.5 (see also [Mi1] 11.3.18).
We finally show the condition (iii), that is, fortwo mags: 7 — Y andf : Y — X in
Y, We prove

(2.9.3) ty, =tryo Rfi(tr,) with h:= fog.

If fandg are openimmersions, (2.9.3) follows from the property (i) and the transitivity of
adjunction maps for open immersions.flandg are proper, (2.9.3) follows from (2.8.1)
and Lemma 2.5.6 (3). Hence, gfis an open immersioor f is proper, then we obtain
(2.9.3) by the previous two cases. We show the general case. Take compactificafions of

andg as follows:
T 1%
SN N
Z p Y ; X,

wherej andp are open immersions amgdandr are proper maps which make the triangles
commutative. Because we already know, by the previous cases, that

tr, = tr, o Rm.(tr,) o R(f oq)(tr;) with a:=pog,

it remains to show the following composite morphism agrees wjth tr

Ro(trg)

Ra!'%n,T RQ!%n,Y L %n,v .

We prove this equality. Take an open immersion 7" — W with dense imagand a
proper mapy : W — V satisfyinga = « o 5. Then one can easily check that the square

TC_ﬁ)W

| |

y sy
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is cartesian. Hence we have

0" (R+(3r)) = idgg, (5 denotes? 33" — id)

o (tr,) =tr, (cf. §2.8)
and thusp*(tr,,w,s,)) = try, which impliesg o Ro(try)) = tro wpg,) = tre. This
completes the proof of Theorem 2.6.2. O

2.10. Purity for logarithmic Hodge-Witt sheaves. Theorem 2.6.2 implies the following
purity result, whose special case was needed in [JS].

Corollary 2.10.1. Let f : X — Y be a morphism of smooth varieties of pure dimension
d ande, respectively oves = Speck). Then there is a canonical Gysin isomorphism

trf W QX log[d] — Rf W QYlog[ ]
Especially, forg : X — s smooth of dimensio# we get a canonical isomorphism
17 W, Q% ogld] == Rg'Z/p".

Proof. The first claim follows from the isomorphisms

WQiogld] Jo Mux o Rf My 5= REWQ500e].

For the special case note tH&{ Q9 = Z/p . O

Remark 2.10.2. With the notatiorZ /p" (r) x := W, %, [—r] the purity isomorphism in
Corollary 2.10.1becomes

(2.10.3) tf : Z/p"(d)x[2d] == Rf'Z/p"(e)y[2e].
Whenf is a closed immersion” is adjoint to the modified Gysin morphigth5.4) When

f is propertr/ is adjoint to Gros’ Gysin morphisi@ys; only up to the sigri—1)4-¢, cf.
Remark2.5.5

2.11. Bloch-Ogus complexes and Kato complexed=inally we have the following ap-
plication to Kato complexes, which is analogous to Theorem 1.5.8.Sls a smooth
scheme of pure dimensiahover k. (Most interesting is the case = Speck), d = 0,
which was needed in [JS].) For a separated scheme of finite typeSover X — S,
define its homology with coefficients ia/p™(—d) by

(2.11.1) H,(X/S,Z/p"(~d) == H*(X, Rf'Z/p"(d)s).

These groups define a homology theory on the category of sepdiatellemes of finite
type, in the sense of [JS] 2.1 (cf. loc. cit. 2.2), and in a standard way one obtains a niveau
spectral sequence

(211.2) E (X/S Z[p"(— @ Hyi(x/S, Z[p"(—d)) = Hgt(X/S, Z/p"(—=d))

z€Xy

for X as above (cf§1.5 and [JS] 2.7).
Theorem 2.11.3.Let X be a separated-scheme of finite type.
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(1) There is a canonical isomorphism
Ey (XS, Z/p"(=d)) = @ H'"* (2, Z/p"(@) = @ H (=, W0 ,,).

z€Xq z€Xq
(2) Via these isomorphisms, the Bloch-Ogus comﬁl@(X/S, Z/p"™) coincides with
the sign-modified modified Kato compte % (x) ().
(3) Especially, for a separatek-schemeX of finite type, purity induces an isomor-
phismE! (X /k,Z/p") = C,:° (X)),

Proof. (1) follows from the purity isomorphism
H,(V/S,Z[p"(—d)) = H *(V,Rf'Z/p"(d)s)

2.11.4 >~ ety 7
( ) 0109 V. Z/p"(a)v)
for f : V — S with V smooth of pure dimension

Since (3) is a special case of (2), we prove (2) in what follows, by similar arguments
as in the proof of Theorem 1.5.8. The question is loca$ iand X. Therefore we may
assume thaf : X — S factors as follows:

Y. p_Ts S,

wherer is a smooth morphism of pure relative dimensigrand: is a closed immersion.
The Gysin isomorphisn®/p™(d + N)[2N] ~ Rxn'Z/p"(d) from (2.10.3) induces an
isomorphism of homology theories

v : Hioan(=/P,Z/p"(—d = N)) = H.(=/S,Z/p"(—d))
on all subschemes @t, and therefore an isomorphism between the corresponding spectral
sequences. Moreover, for an open subschgme U — P and a closed subscheme
iy : V — U of dimensiory, the purity isomorphism (2.10.3) for the composition

(2% ™

Ul p

S

g=mojgoiy: V¢

factors as
triv

Z/p"(@)v[2q) ——— RiyZ/p"(d+ N)y[2(d+ N)]
S, Rilgy R 2/p(d)s(24)
Rg'Z/p™(d)s[2d] .
The first morphism here induces the modified Gysin map
Gys, : H™ (V. 2/p" (q)v) — Hy (U Z/p"(d + N)o)
in (2.5.4). Thus the compatibility facts in Remark 2.5.5 implies the claim. O
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3. THE CASE OFp-TORSION IN MIXED CHARACTERISTIC(0, p)

Let S be the spectrum of a henselian discrete valuation Aivgth fraction field K of
characteristic zero amkrfectresidue fields of characteristip > 0. Consider a diagram
with cartesian squares

X, X x Ko,
fni O fl O fsl
et g<l s,

wheren (resp.s) is the generic point (resp. closed point)$fandf is separated of finite
type. Letn be a positive integer, and 1€}, (resp.£;) be theétale sheafi,» onn (resp. the
constanétale shea?./p" on s). We define

EXTI = Rf;]gn S D+(X77,'et7 Z/pn)7
Ex, = RI'E, € D (Xoon Z/p").

We recall some standard facts 61, (compare Theorems 2.6.2 and 2.1.14qr)

3.0.1. If X, is smooth over) of pure dimensior, then there is a canonical isomorphism
teln st 2d) = Ex,

in D (X, e, Z/p™) by the relative Poincé&rduality [SGA4] XVII1.3.25.

3.0.2. For pointsy € (X,)), andz € (X,),_; withz € {y} C X, there is a commutative
diagram

_8valm
202 — > it (20 — 1]

RL;SXW [1]

*
Uy Ryt
U Ry (Ty) lg

L*{éloc (5X )}
" | z %,z n
LxRLy*RLySX”

in D (xe, Z/p™). Here for a poinb € (X)), ., denotes the canonical map— X, and
7, denotes the canonical isomorphigfi™*'[2m] = R.\Ex, obtained from;3.0.1 for a

smooth dense open subset{of. The top arrow is given by the boundary map
a?\J/?wl : RIL?J*/“L?”(]JFI E— Lz*,u?nq (Cf §06)

and the fact that? R%.,.p¢ " = 0 for u > 2 (cf. [SGA5] 1.5). One can check this
commutativity in the following way. Localizing and embeddiig into an affine space,
we may suppose tha¥, is smooth. Becaus&.}&y, (1] (resp.L;Rby*ufnq+1[2q]) is con-
centrated in degree2q + 1 (resp.< —2¢ + 1), the problem is reduced, §9.5.4 (1), to
the commutativity at thé—2q + 1)-st conomology sheaves, which follows from Theorem

1.1.1 and [SGA4] Cycle, 2.3.8i).
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3.1. Condition K,. The complexegx, and&x, are important for the theory of duality
and homology over ands, as we have seen {1 and§2. For working overS, we study
morphisms

RjX*(an — RZ'X*EXS[—l] s
see§3.2 and§3.6 below. In particular, we want to investigate local conditions. For a
pointv € X, leti, be the canonical map — X. Letq be a non-negative integer, and
take pointsy € (X,), andz € (X;), withz € {y} C X. PutY := Spe¢&y; ) and
=Y xx X, and letr : Y — X be the natural map. Then we have cartesian squares

c Iy oy,

Y Y T

J o oo

Jjx ix
ch—>X<—)X57

and a canonical nilpotent closed immersion- z’. Now let

Ox : Rjx.Ex, — Rix.Ex,[—1]
be a morphism i+ (Xe, Z/p"). Applying Rr, Rr' to §x, we obtain a morphism
(3.1.1) Rm Rr'(6x) : Riy R Ex, — RigRe,Ex,[—1],
wheree, denotes the canonical map— X, and we have used base-change isomor-
phisms

Rr'Rjx. = Rjy.Ri, and Rm Riy,= Riy.Re,
and the isomorphism
Rex/*Reé, = Rem*Re!x

by the invariance oétale topology. Furthermore, we haie,€x, = 1" [2¢] by §3.0.1,
and we haver! Ex, = W, 0%, _[q] by Theorem 2.6.2. Therefore the morphism (3.1.1) is

z,log

identified with a morphisnii,. ;i " [2q] — Ri,. W, Q2. [¢ — 1], which induces a map

of cohomology sheaves in degreg + 1:

. patl; ®g+1 . q
Ox(y, @)+ RT dyupin ™ — iR Q2 -

We are going to compare this map of sheaveXgrwith Kato’s residue map (cf. (0.1.1)):

val . pg+1, ®q+1 . q
8%33 PR i —— W Qmog.

Definition 3.1.2. We say thabt x satisfiek, if the induced mapx (y, =) agrees Witrﬁ‘y’?;
for all pointsy € (X,), andz € (X,), withz € {y}.

Remark 3.1.3. In view 0f§0.5.4 (1) the morphisn{3.1.1)is determined by (y, x). In
fact, we haveR™i,.p5 " = 0 for anym > ¢ + 1 by a similar argument as for Lemma
3.5.1below.
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3.2. Functoriality of Kato’s residue maps. Let
o Rj.E, — RiE 1]
be the composite morphism
Rj.E) 2 1< RjE) — R'5.E[-1] — i.E]—1]

in D*(Se, Z/p™), where the firstisomorphism follows from a theorem of Langgd= 1

(cf. Lemma 3.5.1 below) and the last morphism is induced by Kummer theory and the
normalized valuatiom, on K*, i.e., Kato’s residue map (c§0.1). By the base-change
isomorphisms

Rf'Rj.E; = Rjx.Ex, and Rf Ri,E = Rix.Ex,,
we obtain a morphism
o5 = R (68" : Rjx.Ex, — Rix.Ex,[-1] in D'(Xey, Z/p").
The first main result of this section is the following theorem:

Theorem 3.2.1. (1) The morphisnas @ satisfiesk, for all ¢ > 0.
(2) 5@ is the only morphism that satisfi&s, for all ¢ > 0.
(3) If X, is smooth of pure dimensiah 65*? is the only morphism satisfyirig,.

The proof of this result will be finished i$8.8 below.

3.3. First reductions. We first note that, to prove Theorem 3.2.1, we may assume that
X is reduced and the closure af,. In fact, letX’ C X be the closure of, with the
reduced subscheme structure. Then we get cartesian squares

(Xn)redci> X! JX_’)Xé

Jx ix
X, ¢ X <2oX,,

wherex is the closed immersion. They induce a commutative diagram

. ks RE (8x) .
K*R]X'*gxgl e H*ZX/*gxg

Knx lz \L Rgx

. 5x .
Rjx.Ex, ix«Ex,

for any given morphisndy at the bottom. The left adjunction map is an isomorphism by
topological invariance oétale cohomology. MoreoveRx'(65¥8) = §5.¥, and evidently

dx satisfiesk, if and only if Rx'(dx) does. This shows that the claims of Theorem 3.2.1
hold for X if and only if they hold forX’. We also note the following reduction:

Lemma 3.3.1.Amorphismix satisfiedk, if and only if for all integral closed subschemes
vz : Z — X of dimensiony the morphismR., (5 ) satisfiesK,. In particular, Theorem
3.2.1(1)holds for X if and only if 57V satisfiesK, for all integral subschemeg C X

of dimensiond.
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Proof. Let X be arbitrary. Take a point € (X,), (0 < ¢ < d := dim(X,)), let Z be
its closure inX, and take anx € (X;), withz € Z. Let.y : Z — X be the natural
inclusion. We have base-change isomorphisms

RL!ZRjX*an = Rjz*gzn and RL!ZRiX*(gXS = Riz*gzs,

and it follows from the definitions i§3.1 thatdx (y, z) = (Ri5(5x))(y, x), if we regard
these as mapg R+ 1, i ™ — W, Q2 . This shows the first claim. The second claim

z,log"

follows, becausei.}, (652" = 55 O
Finally we note:

Remark 3.3.2. To prove thatiy ¥ satisfiesK, it suffices to assume thgt: X — S'is
proper by taking a compactification ¢f

3.4. Criterion in the proper case. Suppose that we are given two morphisms
s : Rj.E, — Ri&[—1] in DY (Se, Z/D"),
Ox : Rjxi€x, — Rix.Ex,[—1] in D7 (Xey, Z/p").

Assuming thatf is proper, we give a simple criterion as to whignagrees withR f'(ds),
that is, as to when the following diagram commute®in(Xe, Z/p™):

(3.4.1) RjxiEx, — X+ Rix.Ex.[-]]

Rf'Rj.E, Rf'Ri,E[-1],

Rf'(6s)

where the equalities mean the identifications by base-change isomorphisms.

Proposition 3.4.2. Suppose thaf is proper. Then the diagrarg8.4.1)commutes if and
only if the following diagram is commutative

(3.4.3) HY(X;,Ex,) —~ HO(X,, Ex.)
HY(7,&,) & HG,E,)

wherer) denotes the generic point of the maximal unramified extensiohS (s is the
closed point of5); the vertical maps are defined by the adjunction R f' — id and
the properness of, thatis,Rf, = Rf..

Proof. By the adjointness betwedR/' and R f,, we have the adjunction mags: id —
Rf'Rfrandf, : RfiRf' — id, which satisfy the relation that the composite

Rf* L5 RFRARF -5 RY
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is the identity map. By these facts, it is easy to see that the commutativity of (3.4.1) is
equivalent to that of the following diagram in* (Se, Z/p™):

Rfi(dx)

(3.4.4) RfiRjx.Ex, RfiRix.Ex,[-1]
| |
Rj*gn & Ri*ES[_l] )
wherea is defined as the composite
o RARjx.Ex, =22 R{R[R)E, > R).E,

andg is defined in a similar way (note that we do not need the properneggafthis
equivalence). We prove that the commutativity of (3.4.4) is equivalent to that of (3.4.3).
For this, we first show the following:

Claim.i*RfiRjx.Ex, = i" Rf. Rjx.€x, is concentrated in degrees 1.
Proof of Claim Because the stalk atof the m-th cohomology sheaf is
H" (R Rjx.Ex,)s = H™ (X5, Ex,)

by the properness of, it suffices to show that the group on the right hand side is zero
for m > 1. Take an open subsét, C X, which is smooth ovet; of pure dimension

d := dim(X,) and such thatlim(Z,) < d, whereZ, denotes the closed complement
X, \U,. By (0.4.2), there is a localization exact sequence

(3.4.5) = H"™(Z5,E,) — H™(X5,Ex,) — H™(Uy, Ey,) — -+~
Now we havey, = p50'[2d] by §3.0.1 forU,, so that
H™(Ug, Eu,) 2= H™ 24Uy, pit )

which vanishes forn > 1 because dd/;) < 2d + 1, cf. Lemma 3.5.1 below. Thus the
vanishing of i (X35, £x, ) for m > 1 is shown by induction odim(X,,) and we obtain
the claim. O

We turn to the proof of Proposition 3.4.2. By the above claim &n8.4 (1), a morphism
i*Rfi Rjx.Ex, — E[—1] is determined by the map of tlst cohnomology sheaves, and
thus determined by the associated map of their stalks dience by the adjointness
betweenRi, andi*, the diagram (3.4.4) commutes if and only if the diagram (3.4.3) does.
This completes the proof of Proposition 3.4.2. O

3.5. Result for smooth generic fiber. In Proposition 3.5.2 below we obtain a first step
towards part (3) of Theorem 3.2.1 which will also be used for the other parts. We first
show:

Lemma 3.5.1.Let.# be a torsion sheaf oX,)s. ThenR™jx..# = 0 for anym >
dim(X,) + 1.
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Proof. Clearly R™jx..# is trivial on X, if m > 0. Hence the problem igtale local on
X, and we may suppose that= 5. Let z be a point onX,. The stalk ofR™jy..# atT is
isomorphic toH ™ (Spe¢ 0}z [p~]), F), where Spe@’{;[p~']) is written as a projective
limit of affine varieties over; of dimension< dim(X, ). Hence the assertion follows from
the affine Lefschetz theorem ([SGA4] XIV.3.2) and Lang’s theorem(nrd= 1 ([Se]
11.3.3). O

Proposition 3.5.2.If X, is smooth of pure dimensiaf) then there exists a unique mor-
phisméy : Rjx.Ex, — Rix.Ex,[—1] satisfyingK,.

Proof. By §3.3 we may assume thaim(X,) < d. We havefx, = u;’?d*lpd] by §3.0.1,
and Rjx.Ex, is concentrated in—2d, —d + 1] by Lemma 3.5.1. On the other hand,
Rix.Ex [—1] is concentrated in degréed + 1, 1] by Theorem 2.6.2 and the assumption
dim(X,) < d. Hence a morphismy : Rjx.Ex, — Rix.Ex,[—1] is determined by the
map.sZ -1 (5x) of the (—d + 1)-st cohomology sheaves l§9.5.4 (1). Moreover, for a
givendy, there is a commutative diagram of sheaves\gn

Jaia—d—&-l (ij*an) Rd+1 *M®nd+1 « @ Rd+lly*M§d+1
ye(Xn)a

59f7d+1(5x) ,yl

A (Rix.Ex.[~1]) == ix A (Ex,) L P i,

$€(Xs)

wherea is the adjunction mapj7 is an inclusion obtained from Theorem 2.6.2 ani
the sum ofdx(y, z)’'s. These facts show the uniqueness gfsatisfyingKK,;. Next we
prove its existence. For this, let us consider the following diagram of sheaves:

d+1 ; d+1 d+1,; ®d+1 1 d
P @ R e @) i
yE(Xn wE(X»,])d 1

@ y y
\
00— Z.X*%_d(ng) *ﬁ> @ im*I/VrLQi,log & @ Zz*W Qd !

z,log ?
2€(Xs)a 2€(Xs)a—1

wherea and § are the same maps as above, and eéadh = 1,...,4) is the sum of
Kato’s residue maps. We have the following facts for this diagram: the right square is
anti-commutative by [KCT] 1.7 foX'; the upper row is a complex §8.0.2; the lower

row is exact by Theorem 2.6.2. Hengginduces a map as in the diagram, and we obtain

a morphismdy satisfyingK,; by extending this map (c£0.5.4 (1)). This completes the
proof. O
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3.6. Case of points. We will prove Theorem 3.2.1 (1) by induction dim(.X,)). We start
with:

Lemma 3.6.1. TheorenB.2.1is true for X with dim(X,,) = 0.

Proof. First we show 3.2.1 (1). By Lemma 3.3.1 and Remark 3.3.2 we may assum¥¢ that
is integral and proper. Thefi: X — S is flat and finite by Zariski’s main theorem, and
moreover,X is irreducible becausg is henselian and is irreducible. Letj’ : ' — X
(resp.i’ : s — X) be the generic (resp. closed) point. Thgr= X, andn’ — 7 is finite
étale, becaus4 is integral and ch') = 0. On the other handy — s is finite étale as
well by the perfectness df, and this map factors as the composite of a nilpotent closed
immersions’ — X, with f, : X, — s. Therefore we hav€y, = p,» and&x, = Z/p".

Now let

Ox @ Rjx«€x, — Rix.Ex,[—1]

be the composite morphismjx.,n — R'jx.ppn[—1] — ix.Z/p"[—1], where the last
morphism is given by the ma@;‘?‘"s,. Because)x satisfiesK, by definition, our task is
to show the equalityy = 55 (:= Rf'(6%)). Moreover, by the finiteness gf and

Proposition 3.4.2, we have only to show the commutativity of the diagram

(36.1) HY (0, )

7,
tre

H' (1), ) ——> H(s, Z/p")
n,s

assuming that = s’ = 5 (that is,% is algebraically closed). We show this commutativity.
Let B, be the affine ring ofX, let B be the normalization oB,, let L be the fraction field
of B and letx be the closed point of SpeB). By definition,axa' is the composite

Hl(n/aup") - HO(IaZ/pn) — HO(‘S:Z/pn) .

where the first map is given by the normalized valuatigron > and the second map is
induced by the isomorphism= s. On the other hand, there is a commutative diagram

L*Jp" —— H' (1), ppn)

NL/K\L ltrf

K> /p" —— H'(n, pyn)

where Ny, denotes the norm map (cf. [SGA4] XVIII.2.9 (Var 4)), and the horizontal
arrows are boundary maps coming from the Kummer theory,fandr, respectively.
Therefore the commutativity of (3.6.1) follows from the fact thgt= v4 o Ny /x. Now

we prove the other parts of Theorem 3.2.1 #r By §3.3 we may assume tha is
reduced. Then, sincéim(X,) = 0, X, is smooth, and Proposition 3.5.2 implies that
63¥@ is the only morphism satisfying. O



40 U. JANNSEN, S. SAITO AND K. SATO

3.7. Induction step. Consider the following situation. Suppose thats reduced, sep-
arated of finite type oves, that X, has dimension/ > 1, and thatX, is dense inX.
Choose amooth affinelense open subskt, C X,,. Let Z, := X, \ U, with the reduced
structure, letZ be the closure of/, in X, and letU = X \ Z. Then the composite
morphismf, : Z — X — S is flat, and hence we have

(3.7.1) (Us)a = (Xs)a-
We name the canonical immersions as follows:
U C ]U ZU S U

] o]

(_>X<_)

MJ vl

ZC—>Z<—)Z

Consider a diagram of the following type 0" (Xe, Z/p™):

(3.7.2)
R Rjz.Ez, Rjx.Ex, Ro.Rjy.&u, — Ry, Rjz.E7,[1]
éﬁl 1) 51 (2) 8o ®) 6%[%
Ry, Riz.Ez,[—1] L Rix*gv)(s[— 1] R Rcﬁ*RZUigU [—1] =0 Ry Riz.&z, .
Here we put

05 = Rp.(65%) = R RI, (08, @ = 60%(Rix.Ex,), €2 = 005 (Rix.Ex,),

the horizontal rows are the distinguished triangles deduced from the obvious localization
triangles (cf. (0.4.2)) and the base-change isomorphisms

RY'Rjx.Ex, = Rjz&z, ¢*RjxEx, = Rjv&u, ,
RY'Rix.Ex. = Riz.Ey. ¢"Rix.Ex, = Riy.u, .

Lemma 3.7.3.1f &, is given, there is at most one morphigpmaking the squared) and
(2)in (3.7.2)commutative.

Proof. We want to apply Lemma 0.5.3(3). Becausgis smooth and affine, we have
Eu, = pst2d) by §3.0.1, andC' = R(¢jv ).y, is concentrated in—2d, —d + 1]
by a similar argument as for Lemma 3.5.1. On the other hand, bedau$é&;) < d,
Rix.Ex, is concentrated if-d, 0] by Theorem 2.6.2 (note that is a closed immersion).
Similarly, A" = Ry, Riz.Ez, is concentrated if—d + 1, 0], because we havlim(Z,) <

d — 1 by the flatness of ; : Z — S. Therefore we get

HomD(Xz/pn)(C, A/) =
On the other hand, fad = Ry, Rjz.£z, andC’ = R, Riy.£y,[—1] we have

Homgixﬁz/pn)(A, C") = Homp(x z/pm) (R R 7.E2,, Ry Riy.Eu,[—2])
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= Homp(x z/pm) (¢" Rpu Rjz.E 2, , Riv.Eu,[—2]) (adjunction)
-0 (0" Ripy = 0)

So the lemma follows from Lemma 0.5.3 (3). O

Lemma 3.7.4.Consider the diagran@3.7.2)and assume that, = R¢.(dy) wheredy :
Rjuv.€u, — Riy.Ey, denotes the morphism obtained by applying Propos@idn2to U.
Assume thak,_, holds fors; V@,

() If X is integral, then the squarg) in (3.7.2) commutes. Consequently, there
exists a morphism; which makes the squarés) and(2) in (3.7.2)commutative
at the same time.

(i) If f: X — S is proper, then any morphism making the squarél) in (3.7.2)
commutative necessarily coincides with"d'.

Proof of Lemma 3.7.4(i) As we have seen in the proof of lemma 3.7E¢jv).Ev, iS
concentrated if—2d, —d + 1] and Ry, Riz.E, is concentrated ifi-d + 1,0]. By these

facts, the square (3) commutes if and only if the square of the induced homomorphisms
on the (—d + 1)-st cohomology sheaves commutes. We prove this commutativity on
cohomology sheaves. By Theorem 2.6.2, we have

AN R RigEz,) = Vuige T (E7) — @ W00,

z,log *
z€(Zs)d—1
Hence we may suppose th&i;, ), ; is not empty, and the problem is local at each point
in (Zs)q—1. Now fix a pointz € (Z;),—1, and defineB (resp.C, D) as Spetlx ) (resp.
U xx B, Z xx B), and leto be the open immersiofi,, — 5. Note that5 is integral
local of dimension two and thd®, andE := (C;)eq are finite sets of points iB* ¢ X*.
Our task is to show the commutativity of the following diagramZy

(3.7.5) Ritlg, &1 2 P Rl

z€Dy
6 l N

D iy Wy — 0T,

y,log z,log
yer

where for a pointy € B, we wrotei, for the mapyv — B and we have used the iso-
morphismsz, |p, = pi[2(d — 1)] (cf. §3.0.1) and&y, |c, = W,Qf ., (cf. Theorem
2.6.2). Eachy; (i = 3,...,6) denotes the map obtained by restricting the corresponding
morphism in the square (3) of (3.7.2). Now tetbe the generic point oB and leta be

the adjunction mag®*'o, uSit! — R4, uS4t . We have the following facts for the
maps in (3.7.5).

e 05 factors, by53.0.2, as

®. o,
. pd+1 ®d+1 _« d+1,; ®d+1 ’ d; ®d
0y : R o it = R 2 ——— ) RY.p

2€Dy
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e (, factors as

val
. pd+1 Qd+1 d+1, @d+1 Y MY . d
04 R Tiflpn ' — R Gsblpn '~ ——— Gy W Qy’log

yekE

by the construction aof; (cf. Proposition 3.5.2).
®05=2> .cp, 0¥ by the assumption of the lemma.

2,z

®06=—> e 0¥ by Theorem 2.6.2 and the construction@f? . , cf. §2.5.

Y,T
Therefore we obtain the commutativity of (3.7.5) from a result of Kato [KCT] 1.7Hor
by noting thatB' = (C,)' [[ D, ][ E and that Infa) is contained in the kernel of the

map
@ aﬁi; : Rd+1iw*[$§nd+l _ @ Rdiv*lﬁ?nd
v ve(Cp)?
(cf. proof of Proposition 3.5.2). This completes the proof of Lemma 3.7.4 (i), because its
second claim follows witl30.5.2.
(i) By the properness of and Proposition 3.4.2, we have only to show the commuta-
tivity of the right square (1)) of the following diagram, assuming that= s:

(3.7.6) H\(Z,,85,) 2= HY(X,),Ex,) 2= H'(n, &)
Rf*@s%)l @y Rf*wl)l @ 5Vsa'l

HO(Z,,E5.) —2> HO(X,, £x,) —2 HO(s,E,),

where for a proper morphispgof schemes, we wrotg for the adjunction magg, Rg' —
id. The outer square of this diagram commutes, bec&lise Ry, R f},(6%®') and the com-
posite

RfzRfy, = R R RYRF 2 RERS L id
is functorial (in fact, this coincides witlfiz,). On the other hand, the square’(@pm-
mutes, becaus& makes the square (1) in (3.7.2) commutative. Moreover, in view of
the exact sequence (3.4.5), the upper horizontal atrowm (1) is surjective, because we
have

Hl(UnagUn) ~ H2d+1<Un,M§nd+l) =0

by the assumptions that = 5 and thatU, is smooth affine of dimensiod > 1 (cf.
Lemma 3.5.1). Therefore (1)s commutative, and we obtain Lemma 3.7.4 (ii)). O

3.8. Proof of Theorem 3.2.1. First consider Theorem 3.2.1(1). By Lemma 3.3.1 and
Remark 3.3.2 it suffices to show:

(#) ForintegralX, 65V := Rf'(6%) satisfiesk, with d := dim(X,).

We show this property by induction ah= dim(X,,). The casel = 0 is settled by Lemma
3.6.1. Now letdim(X,) > 1 and choosé/ andZ = X ~\ U as in§3.7. Assume that

dy = R¢.(dy) with oy as in Lemma 3.7.4. The assumption of this lemma holds because
(#) holds forZ by induction assumption. Therefore there is a morphismaking (3.7.2)
commutative, and this morphism & = 65'@. We conclude that, = ¢* (55" =
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5e7vel. Henced ¥ satisfiesK, (by choice ofd;), ands3 V@ satisfiesk, as well, because
(X,))a = (U,)a by density ofU in X, and(X,); = (Us)q as noted in (3.7.1).

Theorem 3.2.1 (3) now follows from Proposition 3.5.2, becaijsé' satisfiesK,.
Theorem 3.2.1 (2) follows once more by induction®r= dim(X,), the casel = 0
being given by Lemma 3.6.1. if > 1 we may assume thaX is reduced and then again

choosel/ andZ = X ~\ U as in§3.7. Assume that a morphism

01 ¢ Rjx.Ex, — Rix.Ex,[—1]

satisfiesK, for all ¢ > 0. ThenR'(¢,) satisfiesK, for all ¢ > 0 and agrees with;

by induction assumption. On the other hantd,) satisfiesK,; and thus coincides with
657 by Theorem 3.2.1 (3) just proved. The conclusion is thamnakes the square (1)
of (3.7.2) commutative witli; = Ry, (05¥), and the square (2) of (3.7.2) commutative
with 6, = Ro¢.(0;¥). Since obviouslysy @ makes these diagrams commutative as
well, Lemma 3.7.3 implies; = 55 as wanted. This concludes the proof of Theorem
3.2.1. O

3.9. Dualizing complexes.We apply our results to the study of dualizing complexes as
indicated in parg0.2 of the introduction. Recall the following diagram:
nels gty
Definition 3.9.1. For each integer- > 1 define
Z[p"(1)s = Conddg' : Rjupyn — . 2/p"[=1])[~1] € D"(Ser, Z/p"),
the mapping fiber of the morphis#tf' defined in§3.2

In general, mapping cone or fiber of a morphism in a derived category is only well-defined
up non-canonical isomorphism. However in our case it is well-defined up to a unique
isomorphism, because we can apply the criterion of Lemma 0.5.3 (1). Indeed the complex
Rj.pym is concentrated if0, 1], A[1] = 4,.Z/p"[—1] is concentrated in degree 1, afid
induces a surjectiod®' j, j,» — i.Z/p" so that the mapping fibeB is concentrated in
0,1] as well. Therefore Homysz/») (B, A) = 0. (This argument should replace the
reasoning in [JS] p. 497, where the criterion is misstated.)

By the above, there is a canonical exact triangle

val
S

(3.9.2) LZ/p" 2] - Zfp" ()5~ Riaur o 02" (1],
which induces canonical isomorphisms
(3.9.3) t: g (Z/p"(1)s) 2 and g:Z/p"[—2] = Ri'(Z/p"(1)5) .
Now let f : X — S be separated of finite type, and define
Ex = Rf'Z/p"(1)s € DY (Xer, Z./p").

Also, letEx, = Rf,u» andEx, = Rf,Z/p", as we defined at the beginning of this
secton. Then, by applyingf' to the exact triangle (3.9.2) and using the base-change
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isomorphisms as in (3.4.1) we get a canonical isomorphism of exact triangles

S-val

(3.9.4)  iv.Ex— oy s Rjx.Ex, iy Ex. [~
(def)
Rf'(g) Rf(2) Rf(55")
RfZ)p1-2) L Rpz )y (1) L R R = RFLZ/p 1],

wheregx andty are the adjunction maps fox and;x, respectively. By Theorem 3.21
the morphisms3 @ satisfies the localization proper¥, for all ¢ > 0 (i.e., is locally
given by Kato's residue maps), and is determined by this property (and jist byX,, is
smooth of dimensio). Moreover, by Lemma 3.9.6 below (see also (4.2.2) below), we
see that

(3.9.5) sVl = 5330 x.(Ex)-
Because the dualizing complex 8y ,» = Ex[2] by definition (cf.§0.2), this equality
implies the last claim in the part (iv) df0.2. In fact, it is easy to see that the local

version treated in this section can be extended to the more global situation described in
the introduction.

Lemma 3.9.6. Consider cartesian squares of schemes
X, Ly o Xy
l 0 fi 0 l
7ty <L oU,
wherei’ is a closed immersion andis the open immersion of the complemént Y\ Z.

Then, for any complex of torsion sheav#s € D™ (Yy) the base-change isomorphisms
give an identification

Rf!((slg,cz(%/» = 5';?@,XZ(Rf!%/) .

Proof. There is a commutative diagram with distinguished rows

. ] | T | J* - 1 76'§CUvXZ(Rf!t}g) . | |
iR (Rf X)) —— Rf' A —— Rj.j*(RfX) Ri Ri'(Rf 2 )[1]

ﬂil a A1) J{z

Vo \ Rf (6|OCZ( )
REG R ) EE R D R (R ) RA(ILR A1),

where the top row is the localization exact triangle (0.4.2) Rgit.#", the bottom row

is obtained by applyingzf' to a localization exact triangle fa#” and the arrows is

a base-change isomorphism. By adjunction, the left hand square commutes. Therefore
there exists a morphism which makes the other squares commute &&8&.2). By

the commutativity of the middle square,is mapped to the identity under the canonical
isomorphisms

Hompx)(Rj.j*Rf' 2, Rf' Rj.j"* ) = Homp (7" Rf' A, j* Rf RjLj"* )
= Homp ) (j*Rf' A, j*Rf' H) .
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But this means that is the base-change isomorphism, and the claim follows. [

3.10. Bloch-Ogus complexes and Kato complexedAs an application, used in [JS], we
deduce the following result on Kato complexes, analogouyd 16 andg2.11. As in [JS]
2.C we define a homology theory on all separateschemes : X — S of finite type
by letting

H,(X/S,Z/p"(=1)) = H™ (X, Rf\(Z/p"(1)5)),
and, following the method of Bloch and Ogus, a niveau spectral sequence
(3.10.1) E} (X/S, Z/p"(-1)) = @D Hye(2/S, Z/p"(—1)) = Hyt(X/S, Z/p"(—1)),

r€Xy

whereH,(z/S;Z/p"(—1)) is defined as the inductive limit over dll,(U/S, Z/p"(—1)),
for all non-empty open subschemiésC {z}. Then we have

Theorem 3.10.2. (1) For X = X, the spectral sequend8.10.1)is canonically iso-
morphic to the spectral sequence fr¢in5.5)

Ey (Xy/m, Z/p" (=) = €D Hypulz/n, Z/p"(=1)) = Hypo( X, /1 Z/p"(<1)).
z€(Xn)q
(2) For X = X, the spectral sequen¢8.10.1)is canonically isomorphic to the spec-
tral sequence
Ep o Xo/$,Z/p") = @D  Hyvria(w/s,Z/p") = Hyyryo(Xo/5;Z/p")
z€(Xs)q

obtained from(2.11.2)after a shift in the second degree. L
(3) Letz € X, N X, = (X,), andy € X411 N X, = (X,)), Withz € {y}. Then there
are canonical purity isomorphisms

Hor11(y/S, Z/p"(=1)) = H Ny, Z/p" (g + 1)),
Hy(x/S,Z)p"(—1)) = H (2, Z/p"(q)) -
Via these isomorphisms, tlig, =)-component
dgir oy, @) H7 Ny, Z/p" (g + 1)) — HT (2, Z2/p"(q))

of the differentiald, , , , in (3.10.1)coincides Wlth—a"a'
(4) The |somorph|sms |(1L) (2) and(3) induce |somorph|sms

EL(X/S,Z/p"(-1)) = Cpl (X))
between Bloch-Ogus complexes and sign-modified Kato complexes.

Proof. (1) and (2) are obvious from the isomorphisms (3.9.3). The first claim in (3) is
clear from the fact thafy} meetsX,, and the isomorphisms then follow from (1) and (2)
and the purity isomorphisms (1.5.6) and (2.11.4), respectively. For the third statement of
(3) we recall that the upper exact triangle in (3.9.4) induces isomorphisms

tx j;}gx = 8Xn and gx - SXS = RZ'XEX
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identifying 05 with the connecting morphism-6%° , (€x), cf. (3.9.5). Sinceyy*
induces Kato's residue maps, we get the claim. As for (4), the compatiblity =) =

—8;'3': between the differentials and Kato’s residue maps follow from (1) and Theorem
1.5.8 fory, z € X, and from (2) and Theorem 2.11.3 fgrx € X,. The remaining case

is covered by (3). O

Remark 3.10.3.1tis easy to see that this theorem proves the clainid$h2.20and2.21,
except that the signs needed to be corrected. The reason for this lies in the interpretation
of the connecting morphism and the resulting minus sigi@ #.2)

3.11. Unicity of the cone. As a complement we show the following unicity result for
Ex = RfY(Z/p"(1)%). Recall the situation at the beginning of this section

XWC&XJL)XS

o] o] 04l

J 7 )S,

U S

and the associated exact triangle, cf. (3.9.4)

S-val

iX*(S'XS[—Q] I 5)( I RjX*an L> Z‘X>c<gX[_1] .

Theorem 3.11.1.The objectfx is uniquely determined, up to unique isomorphism, as
the mapping fiber of3 ¥,

By Lemma 0.5.3 (3) it suffices to show

(l) HomB%Xz/pn)(Z‘X*ng[—m,RjX*SX") =

0.
(i) Homp(x z/pm) (Rjix«Ex,,ix,Ex,[—2]) = 0.

(i) follows by adjunction forj x, becausgix. = 0. As for (i), since
Hompx z/pm) (Rix«Ex,: ix:Ex,[—2]) = HOMp s z/pm) (R faix Rix«Ex,, Z/p"[—2])

by adjunction forix and f, it suffices to show

Lemma 3.11.2. Rf,i% Rjx.Ex, is concentrated in—2d, 1], whered = dim(X)).

We first show the following result, which may be of own interest.

Lemma 3.11.3.Letk be afield, and lef : X — Speck) be separated of finite type, and
letn be a positive integer which is invertible in ThenR f,Rf'Z/n(i) is concentrated in
[—2d, 0], whered := dim(X).

Proof. We proceed by induction o = dim(X). We may assume thatis separably
closed, that = 0 and thatX is reduced, and then the cage= 0 is clear. Choose
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an affine open subséf C X which is smooth of purelim d and whose complement
Z = X ~\ U has dimensior < d — 1. We get a commutative diagram

vt x <"z

N A

Speck)

where ¢ (resp.t) denotes the natural open (resp. closed) immersion, and we defined
fu = fogandf, := fo1. We note that is affine, becausd’ is separated ove (if
V C X is affine, themp~! (V') = U NV is affine). There is an exact triangle

R RY'Rf'Z/n — RARFZ/n — RfiRp.¢*Rf'Z/n -5 .
SinceU is smooth of pure dimensiafy we have
O*Rf'Z/n = Rf,Z/n = Z/n(d)[2d] .
Moreover we have?y' Rf' = Rf,,. Therefore we can identify the above triangle with

(3.11.4) RfnRfLZ/n — RfRf'Z/n — RARG.Z/n(d)[2d] - .

Since Rf, Rf;,7/n is concentrated in—2d + 2,0] by induction, it is enough to show
that A := RfiR¢.Z/n(d)[2d] is concentrated ifi—2d, 0]. Obviously A is concentrated
in degrees> —2d, because this holds fdt/n(d)[2d]. On the other hand, we note that
Z/n(d)[d] is a perverse sheaf dit ([BBD] p. 102), so thatR¢.Z/n(d)[d] is perverse,
because is an affine open immersion (and herteexact for the perversiestructure loc.
cit. 4.1.10(i)), and thatl = Rf R¢. Z/n(d)[d] is of perversity< d (loc. cit. 4.2.4), i.e.,
lies in DP=(k,Z/n) = DP=O(k,Z/n)|—d]. This means that

A€ D=k, Z/n).

Since the perversestructure is the classicatstructure on Spéé), we get thatA is
concentrated in degrees(0. Thus we obtain Lemma 3.11.3. O

Proof of Lemma 3.11.2.We may assume th& is reduced and the closure &f,. Then
we prove the lemma by induction eh= dim X,,. The casel = 0 is easy and left to the
reader. Supposé > 1. Then there is a commutative diagram

U(—¢>X<L>Z

AN g/

where¢ is an open immersiort/, is affine, smooth ovey and has pure dimensieh ¢ is
the closed immersion of the complemeéht= X ~\ U (with reduced subscheme structure),
anddim Z,, < d — 1. We get an exact triangle

(B.115) iy RixutyRULEx, — i Rjx.Ex, — ix Rix.Ropd:Ex, —
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where we used morphisms in the following diagram:

U, U <oy,

o oe o] S

Jx X
X, € X > X, S.

‘BEPs

Z, s 7 Lo 7,

By the proper base-change theoremdawe identify
Z}RJX*wn*ngan = Z}w*RJZ*EZn = ws*i*ZRjZ*an .
Becausep is étale andU,, is smooth of pure dimensiaf) we have

Ro,u6,Ex, = Ropu, = Ry 24).
Therefore triangle (3.11.5), after application®f,, leads to an exact triangle

RyaiyRjz.€s, — RfwikRix.Ex, — Rfai’y Rix.Ronpit2d] 5 .

Since the first term is concentrated[in2d + 2, 1] by induction, it suffices to show that
(3.11.6) A= Rfqi% Rjx« Ry p5t2d]

p

is concentrated in—2d, 1]. It is clearly concentrated in degrees —2d, because this
holds foruf?nd“[Qd]. We prove thatd is concentrated in degrees1 in what follows. By

the proof of Lemma 3.11.32¢,,.15: ' [d] is a perverse sheaf, i.e.,

P = %q(Ran*N@"d_‘—l[d]) = Rq+d¢n*ﬂ®d+1

p pn
has support in dimensiod —gq. In particular, it is non-zero only for-d < ¢ < 0. We
will prove

Claim. The sheafi, R"jx. 2?7 is zero form + ¢ > 1.

We see that}RjX*Rgbn*u]?nd“[d] is concentrated in degrees 1 by the claim and the

Leray spectral sequence
B3’ = ix R jx " = A (ix Rjx. Romepigi ' [d))

p
Moreover sincelim X < d (see the beginning of proof of Lemma 3.11.2) an¢k¢h- p,
we see that
Ald] = Rf i Rjx. Ry [d]
is concentrated in degrees d + 1, so thatA is concentrated in degrees 1. Thus it
remains to show the above claim. By the remark before the claim, it suffices to prove

Lemma 3.11.7.1f .# is anétale sheaf o, with dim(Supp%) < b, then we have
dim(Suppiyx R™jx..#) <b for m >0,
andiy, R"jx.# = 0form > b+ 1.
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Proof. By assumption, there is a closed subket— X, of dimension< b such that
F = 1,9 With¥ = *Z. LetY =V, the closure of/ in X endowed with the reduced
subscheme structure. Théh=Y,, andY, has dimensior< b. We get cartesian squares

Y,y <oy,
G
X, Ix X X X,
with s, x, andx, being closed immersions. Sinc¢é = «,,%, we get
iYRjxe = i1xR " jxsbnd = ixk Ry G = kaiy Ry, Y,
where the last equality is a base-change isomorphism. This shows, thét) x..# has

support inY;, i.e., in dimension< b. Finallly, sinceR"jy,4 = 0form > b+ 1 by
Lemma 3.5.1, we hav&, R™jx..# = Kkaiy R™ iy« = 0form > b+ 1. O

This completes the proof of Lemma 3.11.2 and Theorem 3.11.1. O

By the above results, we obtain the following boundsffer= Rf!(Z/p"(1)s).

Corollary 3.11.8. Putd := max(dim X,,, dim X;). Then
(1) i*RfiEx is concentrated in—2d, 2].
(2) 7*Rfi€x is concentrated in—2d, 0].

In particular, Rf,Ex is concentrated in—2d, 2.

Proof. (1) Consider the exact triangle

1

*RfiixyEx.|—2] —= i* RfiEx —= *RARjx.Ex, — -

A B C

Here

A= Rfs!ng[_Q] and C = Rfs!i}RjX*gX,,
by the proper base-change theorem. Siticgeconcentrated if-2d, 1] by Lemma 3.11.2,
it is enough to show that is concentrated if-d+2, 2]. Sincefx, = .#,, x, by Theorem
2.6.2, the compleXy, is concentrated ifi-d, 0] and any non-zero section o#?(Ex,)
has support of dimensiod —q. This implies that

R™ 4 (Ex.) =0 for m+q > 0.

Indeed, R f,, commutes with inductive limits of sheaves, and for any separated of finite
type morphisny : Z — s with dim(Z) = e and anyp-primary torsion sheat# on Z,
the complexRg,.# is concentrated ifD, e]. ThereforeR fEx, is concentrated ifi-d, 0],
andA is concentrated ifi-d + 2, 2.
(2) Since
J*RAEX = RfnEx, = RfnR [ ,
the assertion follows from Lemma 3.11.3. O
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4., DUALITY FOR ARITHMETIC SCHEMES

The aim of this section is to prove a general duality for constructible sheaves on sepa-
rated schemes of finite type ov&r The main result of this section will be stateds#h 4
below. We begin by reviewing the Artin-Verdier duality for number fields (cf. [AV], [Ma],
[Mi2] 11.2-3).

4.1. Artin-Verdier duality. Let k£ be a number field with ring of integeks,, and let
S = Specoy). For anétale sheaf or a complex étale sheaves on S let H"(S, .%)
be itsétale cohomology group with compact support (see e.g., [Mi2] II.2, [K€3Mor
generalities). LeGy, := Gy s be the sheaf o given by the multiplicative group. By
global class field theory, we have

QZ  (m=3)

(4.1.1) H(S,Gm) = {0 (m =2o0rm > 4).

We normalize the isomorphism fat = 3 as follows. For a closed pointof S, letG, be
the absolute Galois group efy), and let

try,@/Z : Hl (y7 Q/Z) - Q/Z

be its trace map, i.e., the unigue homomorphism that evaluates a continuous character
X € Homeond G, Q/Z) = H'(y,Q/Z) at the arithmetic Frobenius substitutipp € G,
Then for any closed poin, : y — S of S the composition

Gys;, &m (4.1.2)

HY(B,Gm) — Q/Z

H'(y,Q/Z) —*~ H*(y,Z)

coincides with tf /7, where GY$ G, denotes the Gysin map[—1] — Ri;Gm defined

in [SGA4§] Cycle 2.1.1 (see also Proposition 4.2.1 (1) below), and the drigpphe con-
necting homomorphism associated with the short exact sequence

0—Z—Q—Q/Z— 0.

The Artin-Verdier duality shows that for an integerand a constructible she& on S,

the pairing

(4.1.2) H™(S, F) x EXE™(F, Gp) —> H3(S, Gn) 2 Q)2

induced by Yoneda pairing is a non-degenerate pairing of finite groups. The first step for
a higher-dimensional duality is to replaGg, by the object

(4.1.3) Q/Z(V)s = (P lim Z/p"(1)s € D(Sw),

p n>l
wherep runs through all rational prime numbers amduns through all natural numbers.
See Definition 3.9.1 foZ /p" (1), and note that for > n there is a unique transition map
Z/p"(1)s — Z/p"(1)s induced by the natural inclusign,. < p,- onS[p~'], cf. Lemma
0.5.3(1). We will explain a version of Artin-Verdier duality usifiyZ(1)’ in §4.3 below.
Our main result on the higher-dimensional duality will be stateghid below.
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4.2. Kummer theory. We discuss the Kummer theory @, = G s.

Proposition 4.2.1. Letp be a prime number and let be positive integer. Let be the
closed immersiol” := S x;F, — S, and letj be the open immersion of the complement
U:=S[p™']— S. Finally let4,. :== R#oms(Z/p", Gy). Then
(1) There is a canonical isomorphis : py,n —= j*%,n 0N Ut
(2) For any closed subschemig : 7 — S of codimensiorl there are canonical
Gysin isomorphisms 0f;
Gys, g, | Z[—1] = RiyGm and Gys_,.:Z/p"[-2] = Ri,%,

(3) There is a unique isomorphism: Z/p"(1)s = %,» completing the following
diagram to an isomorphism of distinguished triangles

val

(4.2.2) i Z/p" 2] —= Z/p"(1)s — = Rjuftyn i Z/p" 1]
i+ (GYS; pn) iz 8 lz Rj«(Bv) lz 15 (Gys; yn)[1] J{z
. . T J* - _6loc(gpn) . K
i« Ri'G G Rj.j*Gm i Ri'Gyn 1] .

Here the top triangle comes from the definitionZgfp™(1)’, and the bottom tri-
angle from the localization sequen(®4.2)
(4) There is a canonical distinguished triangie D°(Ss))

Z/p"(1)'s 5 G 2 G — Z/p"(1)5[1].

Proof. (1) The exact sequence of sheaves Z X7 Z/p" — 0induces a canonical
distinguished triangle

tr

JZ
(4.2.3) 727 N 7 —> 71
Applying the exact functoR s#om(—, Gn,), we get a canonical distinguished triangle

2 6 ir

(4.2.4) G —> G G —> 4,n[1],

where. := RJZom(can Gn) anddg, = R Zom(d}, Gm)[1]. On the other hand, singe
is invertible onU, there is an exact sequence

Xp

(4.2.5) 0 [ Gy~ Gy —— 0.

This gives canonical isomorphisnis?,. = RZomy(Z/p", Gmy) = p,n as claimed.
(2) First one notes that

ol ~ )z (m=1)
Rz Gm = {o (m #1)

(cf. e.g., [Mi2] p. 185, bottom). Therefore
Homy (Z[—1], Ri,Gm) = H}(S.Gm) = €D Z,

z€Z
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and to get a canonical isomorphism Gys it suffices to replace’ by a pointz € Z and
to find a canonical generator &f! (S, Gy,). This is done by the localization sequence

0%, — k* = HN(S,Gp) — H'(k,Gp) = 0

for the discrete valuation ring’s .. Now we taked(7) as a generator for any prime
elementr of Oy ..
As for the second Gysin isomorphism in (2), consider a diagrafi.pn

" 38 1]
(4.26) z7[-1]—2 Z|-1] —=2 - 7/pr[—1] : Z
Gyslz ) Gyslz 67 Gysl1] lz
n —Ri\, (8% ) v RiY (V)[1]
Ri, Gy ————— RiY,Gpy ———> Ri\, @, [1] — Ri,Gr

where Gys denotes Gys; . The top sequence is a distinguished triangle by (4.2.3) and
the rule recalled ir§0.5.1. The bottom distinguished triangle is obtained by applying
Ri' to (4.2.4) and shifting suitably. Now the commutativity of the squajemplies the
existence of a morphism; making the diagram commutative (¢0.5.2), which then
necessarily is an isomorphism. Moreover, since

Homp s, (Z/p"[—1], Ri},Gm) = Homps,y (Z/p", Z[—1]) = 0  (cf. §0.5.4(2)),

suchfyz is unique by Lemma 0.5.3(1). So Gys. := 3z gives the desired canonical
isomorphism.

(The sign—1 on RiY, (6% ) is motivated by the fact that the restrictiordf. )|v is the
connecting morphisnty,  — p,»[1] associated with the short exact sequence (4.2.5),
which appears in the definition of Deligne’s cycle class [S@P@ycle. In particular, by
our choice, Gygs . agrees with the Gysin morphism§d.1 whenZ is contained iriJ.)

(3) SinceZ/p™(1)’ is concentrated ifp, 1], we have

HOMp (s, (Z/p" (1), 1 Ri'Gn) = HOMp s, (Z/p" (1), 1. Z/p"[~2]) = 0.

In view of Lemma 0.5.3 (1) and the fact that and Gys,,. are isomorphisms, our task
is to show that the right hand square of (4.2.2) is commutatlve which we prove in what
follows. There is a commutative diagram of distinguished triangles

o o 89
(4.2.7) i RU'Gn Gon Rj.j*Gm

! i * o —58'°%(Gm)

i Ri'Gn Gm — Rj.7*Gp

><p’n/ Xp'n Xpn

G
i, Ri'Gn, G —— Rj.j*Gn :
5 5 st
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where the columns are the distinguished triangles coming from (4.2.4), and the rows are
localization triangles. We now obtain the following diagram of sheaveS.pn

val
55

RYj,pipn i/ p"
& @) Gy
. §Gpn) )
le*gpn Z*Rzl!gpn
—5}[5m (b) —5}[5m T (c) T —agm (d) can
/ © ‘:m
j*Gm,U ord Z*Z .

The middle square (c) with the fodis comes from diagram (4.2.7) and anti-commutes,

because'® is functorial for the morphismi¢,_

G — Gya1] and 5%, 1]) =

—6'°°(4,.)[1], cf. (0.4.1). The top arrow® is induced by residue maps, so the outer
square of the diagram commutes by the remark after the proof of (2). The diagram (b)
commutes by the definition gf;;,, and the diagram (d) commutes by the definition of
Gys ., i.€., by the commutativity of the diagram (4.2.6). The bottom arrow is induced
by the normalized discrete valuations for the points Y, and the diagram (e) commutes
by the definition of the Gysin map Gys, . Consequently the diagram (a) anti-commutes,
and the right hand square of (4.2.2) commute§®$.4 (1). Thus we obtain (3).

Finally (4) follows from (4.2.4) and the isomorphissrin (3) by lettingy :=to 3. O

4.3. Artin-Verdier duality revisited. We formulate a version of Artin-Verdier duality
usingQ/Z(1)’ defined in (4.1.3). Lep be a prime number and letbe a positive integer.
There is a commutative diagram of canonical morphism@4Ss)

Z/p"(1)s —> G

-

70

Q/Z(1)s,

where~ is given in Proposition 4.2.1 (4), ang is the inductive limit ofy onr > 1 and
primesp. Concerning these morphisms, we prepare the following lemma:

Lemma 4.3.1. The mapy, induces an isomorphism

a:Z/p"(1)s = RH#omgs(Z/p",Q/Z(1)s)

in D+<Sét7 Z/pn),

which fits into a commutative diagram In* (Se, Z/p")

Z/p" (1)

B

~

RAoms(Z/p", Gm)

aiz /

RAoms(Z/p", Q/Z(1)s) .
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Here 5 denotes the isomorphism given in PropositébhB.1 (3) and7 is induced byr,. In
particular, 7 is an isomorphism as well.
Proof. We definex as the composite of canonical morphisms
a: Z[p"(1)g = RAoms gz (Z[p", Z/p"(1)s)
— RAoms(Z/p", Z/p"(1)s) % RoAtoms(Z/p", Q/Z(1)5).

By this definition, the diagram in the lemma commutes obviously. We showtigaan
isomorphism. Put

Hon == RA#omg(Z/p",Q/Z(1))

for simplicity. Applying R.7Zomgs(e,Q/Z(1)) to the short exact sequence (4.2.3), we
get a canonical distinguished triangle

, %e/z(1)

Hi —QJZ(1)s 2> Q/Z(1)s L2 A1)

Applying RZoms(e, Gy) to the short exact sequenée— Z/p' — Z/p"tt — Z/p" —
0, we get another canonical distinguished triangle from Proposition 4.2.1 (3)

6t,n n
Z/p"(1)s —=Z/p" "' (1)s — Z/p"(1)s — Z/p"(1)s[1] .
These triangles form a commutative diagram

Z/p" (1) — Z/p (1) —= Z/p (1) —2 Z/p"(1)5[1]

al a for r+tl g for ti

, XD ,  So/z)
%" Q/Z(l)s H@/Z(l)s %”[1]
Therefore we see that is an isomorphism by taking the inductive limit o> 1 of the
upper row. 0

The next result replacés, by Q/Z(1)’ in the duality for constructible torsion sheaves.

Proposition 4.3.2.For £ € D~ (Se, Z/p"), there is a commutative diagram of functorial
isomorphisms D" (Se, Z/p™)

RAoms g (L, L)p"(1)s) == RAoms(.L, Gp)

R#oms(L,Q/Z(1)s) .

TO*

Moreover,r, induces a functorial isomorphism
R#oms(ZL,Q/Z(1)s) = RA#oms( L, Gp)

for £ € D~ (Se) with constructible torsion cohomology sheaves.
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Proof. Let f be the natural embedding functor of sheaves(Se, Z/p") — . (Ser).
Then the functovZoms(Z/p",?) : 7 (Ser) — 7 (Ser, Z/p") preserves injective objects,
because its left adjoint is exact. Hence we have

RAomgzpn (e, Romgs(Z/p",?)) = R omg(e,?)

as bifunctors fromD~(Sg;, Z/p™)°P x D (Ser) to D (Ser, Z/p™) by [SGA4;] Categories
Dérivées 11.1.2.3 (3). The first assertion follows from this fact and Lemma 4.3.1. To show
the second assertion, we may assume_f#iag a constructible torsion sheaf by a standard
argument using spectral sequences. Then by the constructibility, we may further assume
that .2 is annihilated by some positive integer, which reduces the problem to the first
assertion by considering itsprimary components for each primpe O

This result implies the following variant of Artin-Verdier duality.
Corollary 4.3.3. (1) There is a canonical trace isomorphism
trs : H(S,Q/Z(1)s) = Q/Z.
(2) For £ € D"(Se) with constructible torsion cohomology sheaves, the pairing
H'(S, ) x EXt™ (2, Q/Z(1)s) — HX(S,Q/Z(1)s) = Q/Z
induced by Yoneda pairing is a non-degenerate pairing of finite groups.

Proof. By Proposition 4.2.1 (4), we have a long exact sequence
- — H(S,2/p"(1)s) — HI'(S,Gm) 5 HI'(S, Gn)
— HN(S,Z/p" (1)) — -+
By (4.1.1) and this exact sequence, we obtdji(S,Z/p" (1)) = 0 for m > 4 and a
trace isomorphism
tro,m : H2(S,Z/p"(1)s) == Z/p".
We get the trace isomorphism in (1) by passing to the limit-@n 1 and then taking the

direct sum omp.
The claim (2) follows from the non-degeneracy of (4.1.2) and Proposition 4.3.2]

4.4. Higher-dimensional duality. Now let X be a separated scheme of finite type over
:= Spe¢Z), with structural morphisnf : X — S. We define

Ps :=Q/Z(1)5[2) and Zx := Rf'2s (cf.§0.2)
For.# € D (Xg), we define then-th étale cohomology groupith compact suppors
HM"X,%):=H"(S,RHhYL),

where H"(S, o) denotes th&tale cohomology group with compact supportSoés re-
called before. The main result of this section is the following duality (see also [Dn],

[Sp]):
Theorem 4.4.1. (1) There is a canonical trace map
try : HY(X, 2x) — Q/7Z.
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(2) For . € D*(X4g) with constructible torsion conomology sheaves, the pairing
H™X, Z) x EXtY™( &, Dx) — HNX, Dx) 25 Q/Z

induced by Yoneda pairing is a hon-degenerate pairing of finite groups.

Proof. (1) Lettr; : RfiZx = RfiRf'Ps — %5 be the canonical trace map, i.e., the
adjunction morphism for the adjunction betweRfi' andR f, (SGA4] XVI11.3.1.4). We
then define the trace maptas the composite

t
try - HA(X, 7x) 5 HU(S, 75) = HY(S,Q/2(1)) — Q/Z.
(2) There is a commutative diagram of Yoneda pairings
H™X,.Z) x Exty ™(F,Rf'Ds) —= HX(X, Rf'Ds)
|-
Hm B,RfiZ ) X Eth mn Rflf @5) *>H (S .@5)

and the result follows from Corollary 4.3.3. O
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APPENDIXA. TRACE MAPS FOR LOGARITHMICHODGE-WITT COHOMOLOGY

For the definition of the Kato complexes one needs corestriction maps
(AOl) CorL/K : Hj<L7 WLQE,log) - Hj(K7 WlQ?{,log)

for logarithmic Hodge-Witt cohomology and finite extensiansk™ of fields of charac-
teristicp > 0 (cf. §0.6 or [KCT]). These are not defined explicitly in [KCT], but Kato
constructed such maps in earlier papers and referred to results in these papers. In this ap-
pendix we discuss Kato’s construction and some alternative descriptions used in the main
body of the paper (cf. Lemmas A.1.1, A.2.6 and Corollary A.2.8 below). Recall that the
groups above are non-zero only fpt= 0, 1.

A.l. The casej = 0. First we consider the case = 0. Here the definition (0.6.3)
works for arbitrary extensions/ K. But in the following situation this corestriction map
coincides with Gros’ Gysin maps.

LemmaA.1.1. Letk be a perfect field of characteristic> 0, and letr > 0 be an integer.
For a finite extensior./ K of finitely generated fields ovéyr, the following diagram is
commutative

Np/x

KM(L)/p" KM(K)/p"
hT:dIogi lhT:dlog
G
HO (2, WL 0) — = HO(, W)

wherez := Spe¢L), r := Spe¢K) and Gys; denotes Gros’ Gysin map for the finite
morphismf : z — z, cf. §2.1 The vertical arrows are the differential symbol maps, and
Np,k denotes the norm map of Milndf-groups. In other words, the corestriction map
Cory,/x 0f (0.6.3)coincides withGys; .

This property was first shown by Shiho under the assumptien|[K : K?] (unpub-
lished). Later he gave a proof for generdyut under the assumption= 1 ([Sh] p. 624
Claim 2). We include a simplified proof of Lemma A.1.1 to extend his result to general
andn, which will be useful ingA.2 below.

Proof. By the transitivity properties of Gros’ Gysin maps (cf. (P2§#h1) and the norm
maps ([Kal] p.626 Proposition 5), we may suppose that is a simple extension, i.e.,
L = K(«a) for somea € L. Fix an K-rational pointoo on P! := PL and an affine
coordinatet on P! \ {co}. We regard: = Spe¢L) as the closed point oR! \ {co}
corresponding to the minimal polynomial (ipof oo over K. By a result of Bass and Tate
[BT] p. 379 (7), there is an exact sequence

(A12)  KME®) S D KN (k) T KY(E) — 0,
ve(Pl)g

where N denotes the sum of the norm ma@s,,, ).ce1), of Milnor K-groups. This
sequence yields the upper exact row in the following commutative diagram:
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AL3) KM (KW "> @ KM(s(w)/p" — = KM (K)/p"
ve(Pl)g
dlog dlogl
r o’ r
H( WQn—il_c}g)*) @ HO(U WQvlog)*)HO(x WQzlog)
ve(Pl)g

Here we put) := Spe¢K (t)), and? is induced by(9)3)),c (1), The square commutes
by the definition 0f9)2's. The arrowG denotes the sum of the mafs, ),cp),, Where
G, is Gros’ Gysin map for the morphism— x. We will show

Claim. The lower row ofA.1.3)is a complex.

This claim implies that the above commutative square induces a map
Ky (K) /p" — H (2, W, Q1) -

Because thex-components ofV and G are identity maps, this induced map must be
dlog. In particular,N.,, commutes withG, = Gys; via thedlog maps. Therefore it
remains to show the claim.

Proof of Claim.Let g : P! — x be the structure map, and consider the following diagram:

HO(n, W, il) —2~ @@ HO(w, W) — S HO(2, W, 2,

n log x log>
ve(Pl)g

o J/ Gys,

n W) — D HIPL W) — H (PL )
UG(]P’l)O
whereG’ is induced by the Gros’ Gysin maps and the lower row is the localization exact
sequence. By the results§.2, which does not use this lemma, the left square commutes

up to a sign. The right square commutes by the transitivity of Gros’ Gysin maps ((P2) in
§2.1). Hence the upper row is a complex. O

This completes the proof of Lemma A.1.1. O

A.2. The casej = 1. Now we consider the case= 1 of (A.0.1). Kato again used a
symbol map to define a corestriction map in this case for an arbitrary finite field extension
L/K of fields of characteristip. Recall that one has an exact sequencetale sheaves
onx = Speck)

1-F
0— W\, — W, Q8 —— W, Q" /dV™ it — 0,

where F' denotes the Frobenius operator dnalenotes the Verschiebung operator. We
get an associated ‘long’ exact conomology sequence

z,log

1-F
)-u%@;——w%Q%MW%m;%iH%rWQ;%

0 — H(x, W,

z,log

) — 0.
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This induces an isomorphism

(A.2.1) CokefW, Q5 =5 W, Qe /dV Qi) =2 HY (2, W, Q) -

z,log
We adapt the definitions in [Kal] (where a discrete valuation field with residue Aield
was treated) to directly define a symbol map f6Y(x, W, Q" ).

z,log
Definition A.2.2 ([Kal]). Define the grougP’ (K) as
Pr(K) = Wa(K) & (K*)*"/J,

where J is the subgroup ofV,,(K) ® (K*)®" generated by elements of the following
forms
i times
(|) (0,...,0,&,0,...,0)®a®b1®"'®b7«_1 (O <i<r—1,a,by,...,b,_1 € KX)
(i) (Flw)—w)®@h ®--- @b, (we W,(K), by,...,b. € K*). Here F' denotes the
Frobenius operator oV, (K).
(i) w@b @ - @b, (we W,(K), by,...,b. € K*withb; = b; for somes # 7).

We will construct a mag” : P, (K) — H'(x,W,,,,), and show that it is bijective.
First of all, there is a natural map

g W) @ (K) — WAV
Wb @ @b, — wdlog(by) - --- - dlog(h,) moddV" Q!

(w e W, (K), by,...,b. € K*). Fora € K, we wrotea € W, (K) for its Teichnuller
representative. This map annihilates the elements dfof the form (iii).

Lemma A.2.3. Letw be an element of of the form(i) or (ii). Theng"(w) is contained
in the image ofl — F..

Proof. The assertion is obvious far of the form (ii). We show the case thatis of the
form (i). Leta, by, ..., b._1 be elements o * and leti be an integer witlh < i < n—1.
Put

w; == (V'a) dlog(a) dlog(by) - -- - - dlog(b,_1) € W, Qj,
7i == dadlog(by) - --- - dlog(b,—1) € W, Q.

We will prove

Claim. We havey; = V'iz; in T}, Q..

We first finish the proof of Lemma A.2.3, admitting this claim. By the proof of [lll] 1.3.26,
7; is contained in the image af— F' : W,,_;.1 Q% — W, _; Q% . Hencew; is contained in
the image ofl — F' : W, ., Q% — W, Q% by the claim and the equality /' = F'V. The
lemma immediately follows from this fact. Thus it remains to show the claim.

Proof of Claim.SinceF dlog(b) = dlog(b) (b € K*) and
Ve-y=V(z-Fy) (x&W,_1Q, yc W, Q)
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by [1ll] 1.2.18.4, we have only to show the equality
(V'a)dlog(a) = V'da in W, .
The case = 0 is clear. The case= 1 follows from the equalities
(Va)dlog(a) = (Va'?)da @ V(a"' - a' P)dVa = (V1) dVa"® Vda,

where the first equality follows from loc. cit. 0.1.1.9, and the equalities (V2) and (V3)
mean those in loc. cit. 1.1.1. Finally fer> 2, we have

(V'a)dlog(a) = (V' (Va)) dlog(a) = V'~ ((Va) dlog(a)) = V'~ (Vda) = V'da.
This completes the proof of the claim and Lemma A.2.3. O

By the above, we get an induced map

, 1-F

97“ : PZ{(K) — COkeI(I/VnQK - MQ%/CIV"”Q’El) ,
and, by composition with the isomorphism (A.2.1), the wanted symbol map
W Pr(K) — H (2, WS )

Proposition A.2.4. h" is bijective.

Proof. The caser = 1 follows from [Kal] p. 616 Corollary. For the case> 2, consider
the commutative diagram with exact rows

By (K) By (K) P (K)

hrl hrl hrl

OHH1($,VV;L_1QT )HHl(JZ,MQT )HH1($,QT )*>0,

z,log z,log z,log

0

where we put: := Spe¢K). The exactness of the lower row follows from [CTSS] p. 779
Lemma 3 and the Bloch-Gabber-Kato theorem [BK] 2.1. The exactness of the upper row
is obtained from the natural isomorphisms

P(K)®Z/p'= PI(K) for 1<i<n.
Therefore the map” is bijective by induction om > 1. ]

Now we come to the corestriction map defined by Kato. In [Kal] p. 637 Corollary 4, it
is shown that there is an exact sequence

CL(K) — CLE){CTH(K), T} — Pj(K) — 0,

whereC” (K) is a group defined in terms of the gro*uf]@Kr+1(K) considered by Bloch
[B] and T" is an indeterminate used in definiﬂ@fKrH(K). See [Kal] p. 636 for the
precise definition ofC7 (K). By this exact sequencE!(K) is expressed by algebraic
K-groups, and in loc. cit. p. 637 Proposition 3 (1), (2) and p. 658, Kato defined a transfer
map

Trr i (L) — P(K)
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using the transfer map in algebrdictheory. The crucial claim [KCT] 1.9 then relies on

aresultin [Ka2] and the corestriction map Gof defined as the composite
ry—1 T

) e P = P () e 1 (o, W2

T log)

(A25) COI‘L/K cHY (2 W, Qr

z,log

wherez = Spe¢L). We show that this definition agrees with the one given in (0.6.2):

Lemma A.2.6. The following diagram is commutative

TrL/K

£y (L) By (K)

h iz zl h

HY (2, Wy ) % HY (o, W,

z,log T log)

wheretr,, denotes the corestriction map in the sens(0d.5)

Proof. We prove this lemma in a similar way as for Lemma A.1.1. By the transitivity
properties of the two transfer maps, we may supposelthatis a simple extension, i.e.,

z = Spe¢L) is a closed point off! := P.. Letn be the generic point &', and consider

a commutative diagram

A7) P(s(n) —>— P Pilx

ve(Pl)g
(hr)71 i (hr)lwz
tr

H' (W, ril) 2= @ H' (0, W) —= H' (2, W,

n, log T log)
’UG(PI)O

By (w())

—0.

Here @ is defined agd)®).c(e1),, tr is the sum of the maps,fr,, and Tr is the sum

of the maps Tr, = Tr.)/x@)- The arrowd is a residue map induced by the residue
maps of algebraid-groups (cf. [Kal]§2.1 and p. 637 Proposition 3) and the upper row
is a complex obtained from the localization theory in algebrgitheory. The square
commutes up to a sign (loc. cit. p. 660 Proof of Lemma 3). By a similar argument as for
Lemma A.1.1, we have only to show that the lower row of (A.2.7) is exact. Consider the
following diagram:

EM (k) /p" —— P KM (5@))/p" — = KM (k(x)) /p* — 0

ve(Pl)g
dlog |2 dlog iz dlog |2

) = HO(z, W,

x log)

HO W, ril) 2~ @ H(, W0 ——0.

n,log v,log
ve(Pl)g

where the maps are defined as in (A.1.3), except that at the bottom we now have the map
Cor, the sum of the corestriction maps Cor Then the left square commutes by the
definition of the residue maps, and the right square commutes by the definition (0.6.3) of
the corestriction maps. The upper row is exact as we have seen in (A.1.3) and the vertical
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maps are all isomorphisms. Therefore the lower sequence is exact as well. Sheafifying
in the étale topology for’ we obtain an exact sequence of sheaves whose stalks at the
separable closurk of K are

Wt L P W, S WL

UE(Pl)O

z’/ log 0 )

with 2/ = SpedK), ¥ = n x, 2’ andv’ = v x, /. By taking cohomology!(x, —)
(which is a right exact functor op-primary torsion sheaves) and applying Shapiro’s
lemma, we obtain an exact sequence

H (W) L @ H' 0, W,,) - H (2, W,Q

n,log
’UG(]P)l)O
where tr is the sum of the race mapg trandd’ coincides with the map’ in (A.2.7), by

the definition of the map@"a' Therefore this sequence coincides with the lower row of
(A.2.7), which shows the exactness of the latter. O

xlog) —>0a

By Lemmas A.1.1 and A.2.6 we immediately obtain:

Corollary A.2.8. Under the same setting as in Lem#ad..1, the following diagram com-
mutes

TrL/K

£r(L) B (K)
h" il lh”
Hl(z WQZlog) Hl(m WQ;log)

In other words, the corestriction map in the sens¢/R.5) coincides withGys; .

This property was first shown by Shiho in the case that K7 = p” andn = 1 ([Sh] p.
630 Claim 3).
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