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0 Introduction

The Riemann zeta-function is defined by the sum and product

(=Y -1l (€0

n>1 p

which converge for Re(s) > 1.

The expression as a product, where p runs over the rational prime numbers, is generally
attributed to Euler, and is therefore known as Euler product formula with terms the Euler
factors. Formally the last equation is easily achieved by the unique decomposition of natural
numbers as a product of prime numbers and by the geometric series expansion

1 - —ms
1—p—s Zzop '

m

The — to this day unproved — Riemann hypothesis states that all non-trivial zeros of ((s)
should lie on the line Re(s) = % This is more generally conjectured for the Dedekind zeta

functions 1 1
CK(S): Z Nas :H 1_Np75'

aCOgk

Here K is a number field, i.e., a finite extension of @, a runs through the ideals # 0 of the
ring O of the integers of K, p runs through the prime ideals # 0, and Na = |Og/a|, where
|M| denotes the cardinality numbers of a finite set M.

Artin examined the analogue for global function fields. Let F, be a finite field with g elements,
q a power of a prime p

Q corresponds to  F,(t) (the rational function field),
Z  corresponds to  F,[t]  (the polynomial ring in a variable),
and on considers the analogous functions:

1 1
2 ve -l ==

aCFy[t]

where again a and p runs through the non-trivial ideals and the prime ideals of F,[t] re-
spectively, and where Na = |F,[t]/a|. Similarly one can examine global function fields K,
i.e., finite extensions to IF,(¢). However the ring [F,[t] is no longer defined by the field (%),
as it was for Z in Q; one could also consider Fy[7] C Fy(t). This is even more the case
for the general fields K, because these no longer contain F,(¢) canonically. It is better and
more canonical to consider the uniquely determined smooth projective curve X over F, with
function field K and to define

1 1
Cr(s) =¢(Xs) = ] T— (N2 11 T ¢ des@)s
z€Xo z€Xo
Here X, denotes the set of the closed points of X, and for x € Xy Nz = |k(z)| is the
(finite) cardinality of the residue field k(x) of x. With deg(z) = [k(z) : F,] we apparently
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have Nz = ¢8(®) and therefore the last equality. These points here are meant in a scheme-
theoretic sense: Observe that for an affine open part U = SpecR C X the points z € U
correspond to the prime ideals p of R, and that k(x) is the quotient field of R/p. The finite
points = correspond to the maximal ideals; for these one has Nz = |R/p|, and one obtains
a similar setting as above.

By the last formula one has ((X,s) = Z(X,¢~*), where

23,7) = [ v € 27

z€Xg

From this one obtains the equality of formal power series

log Z(X,T) = & —log(1 = Tsl) = 3 53 T

zeX xEX n=
oo

= X (X degx)= m;! Fo) 15

m=1 deg(@)|m

where X (F,m) is the set of the F,m-rational points of X over F,: In fact for every x € X, with
deg(x)|m there exist exactly as many F m-rational points, as there exist F-linear embeddings
k(x) — Fym, and their quantity is deg(z).

We consider an example. The smooth projective curve with function field F,(¢) is IP’IIFq, the
one-dimensional projective space over F,. Geometrically, i.e., scheme theoretically we have
Py, = Uy UU,, with Uy = SpecF,[t] = Ay (the one-dimensional affine space over F,)
and Uy = SpecF,[t™!] (the affine space with the coordinate ¢~'). Then we have Uy N Uy =
SpecF,[t,t7!] and U; \ Uy = point ¢ = 0 and Uy \ U; = point t 71 = 0(“t = 00”). Since
A, (Fgm) = Homg, (SpecFym, Af ) = Homg, (Fy[t],Fgm) = Fym (the last bijection sends a
ring homomorphism ¢ to ¢(t)), one obtains

[Py, (Fgn)| = ¢™ +1
This also follows from the known description of points

Py, (Fgm) = ((Fgn)*\ {0})/Fgn
{lao : a1]|a; € Fym, not both zero}
= {[l:alay € Fgm}y U{[0: 1}

By choosing the coordinate ¢ = ¢L, the first set of the union is of course Uy (Fym), and [0 : 1]
is the point “t = o0”. With this we now calculate

ZPL 1) = enp( % (1+qMLZ)

= exp( il L) eap( il ")) = 1= T)%l —q7)

In particular, this is a rational function!

More generally one can show the following result which goes back to E. Artin and F.K.
Schmidt: for a smooth projective (geometrically irreducible) curve X of genus g over I, one
has:

P(T)

PO
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where P(T') is a polynomial of degree 2¢g in Z[T], with constant coefficient 1. Furthermore
Hasse (for g = 1, as well as for elliptic curves) and Weil (for arbitrary g) proved that the
zeros of P(q™*) lie on the line Re(s) = 5. Applied to ((X,s) = Z(X,q*) this proves the
analogoue (conjectured by Artin) of the Riemann hypothesis in the case of function fields.

We change the interpretation. Write

2g
P(T) =]](1 - aT), withe; €Q C C,
i=1
where Q denotes the algebraic closure of Q in C. For a complex number s we obviously have
P(q~*) =0 if and only if there is an ¢ with «; - ¢=° = 1. In this case we furthermore have

1
Re(s) = 5 <= ai |= gz .

A. Weil now observed, that the definition of the zeta-function makes sense for arbitrary
varieties over F, and after calculation of these in several non-trivial cases ([Weil]) stated the
following conjectures.

Weil-conjecture (proved by Deligne in 1973): Let X be a geometric irreducible smooth
projective variety F,. Define

T’VL
n

Z(X,T) = exp(Y |, |X(Fy)|—) € QITT] .

n=1
Then the following holds
I: Z(X,T) is rational, i.e., in Q(T).

(In particular, this implies the existence of a meromorphic continuation of the zeta-function
((X,s) = Z(X,q*), for which the series initially only converges for Re(s) >> 0).

II: One has a functional equation
1 arE
——)=4q2T"Z(X,T
) = 2T TP Z(X.T)
where d = dim X is the dimension of X and E = (A - A) is the selfintersection number of
the diagonal A on X x X.

For the zeta-function in s this means

Z(X

((X,d—s) = 2¢PE9)¢(X,s) .

For a curve of genus g it is easily shown that ' = 2 — 2¢g, and one obtains the classical type
of functional equation, which relates s and 1 — s).

III: One has
P (T)P5(T) ... Py 1(T)

Py(T)P(T) ... Poy(T)

where Py(T) = 1—T, Pyy(T) = 1—¢*T, and generally P;(X) € Z[T] with constant coefficient
1. Moreover one has

Z(X,T) =

P(T) = H(1 —a¥'T) i C[1],

J=1

S



with ‘ '
| ag-z) |=q2 for all j

This is the most difficult part - the analogue of the Riemann hypothesis for arbitrary dimen-
sions.

IV: If X is obtained by reduction mod p (i.e., mod p for a prime ideal p|p) of a variety
over a number field K C C, then b; = deg P; is equal to the i-th Bettinumber of X (C) (the
dimension of the i-th singular homology group of X(C)).

We add two remarks. Property III implies that there is no cancellation between the P;(T),
so they are determined by Z(X,T). In IV arithmetic properties are linked with topological
invariants in an interesting way. For example, if X is a curve of genus g over Q, then X (C)
is a Riemannian surface with “g handles”, and therefore by = 1 = by, by = 2¢g (this coincides
with the results of Hasse and Weil). The number of handles thus has consequences for the
number of points mod p.

Indeed, for his conjectures Weil was guided strongly by topological considerations. In parti-
cular he noticed, that a big part of the conjecture (namely I, IT and IV) would follow from
the existence of a “good” cohomology theory, which suffices the usual topological formalism,
such as the Lefschetz-fixpoint-formula, Poincaré-duality and so on. Such a cohomology theo-
ry was then discovered by M. Artin and A. Grothendieck with the étale cohomology, and
this forms the basis for Deligne’s proof, which we will study below.

We start with a couple of comments about the applications. The Weil-conjectures (i.e. De-
ligne’s theorems) found many, totally different applications and are a central tool for many
results in modern arithmetic geometry. Here we only sketch three applications that are very
elementary and quite typical.

Application 1: (Weil) Is X a geometric irreducible smooth (projective) curve of genus g
over [, then

[ X(Fgr) < ¢" + 1+ 29(\/9)" -

Proof: By comparing coefficients of the power series for log Z(X,T) with the terms above,

one gets
29

:1+q"—2a?§1+q"+2g(\/§)”.

J=1

[ X (Fyr)

Generalizations for higher dimensional varieties are left to the reader, compare also [ De 1]
8.1.

Application 2: (Hasse, Weil) For the Kloostermann-sum

&2(

K(p,a) := er @) e C (p prim,a € 7)

xEF;

one has the bound
|K(p,a)l <2-/p

This follows by examination of the curve

™" T=z+2
e



More generally one gets estimates of the type

Y Q.. m) S (d-1D"gE

where () is a polynomial of degree d in n variables and ¥ : F, — C* is an additive character,
see [Del] and [Kal].

Application 3: (Deligne) The Ramanujan-conjecture: Let

A=q[[a—g)* =) ()"
n=1 n=1
be the Ramanujan-A-function. Then one has

(%) 7(n) = O(nz ™) for all € > 0

First a few words on the history. The following estimates were obtained before Deligne - all
by analytical methods:

-~

Ramanujan (1916) O(n")
Hardy /Littlewood (1918) O(nf)
Kloostermann (1927) O(n’s )
Davenport/Salié (1933)  O(n’s +9)
Rankin (1939) O(n+9)

For clarification: the last fractions are 6 — %, 6 — % and 6 — %; the conjecture requires 6 — %
More precisely Ramanujan conjectured ([Ra)):

(A) 7 is multiplicative, i.e., for (n,n’) = 1 one has 7(nn') = 7(n)7(n’').

(B) | 7(n) |< n'z - d(n) , where d(n) is the sum of the divisors of n.

(C) For the associated Dirichlet series there is a product expansion of the form

ns . 1 — T(p)pfs _l_p1172s

Further he noticed:

(i) (C) implies (A) (generally the coefficients of a Dirichelet series > a,n™* are multiplicative,
if they have an Euler product expansion).

(ii) (B) implies the conjecture (x) above, by the known estimates for d(n).

(iii) If (C) is known, it suffices to show (B) for prime numbers, i.e., to show that for prime
numbers p one has

(B) ) |<2-p7,
because the Euler product also produces a recursion formula for 7(p™).

(iv) Property (B’) is equivalent to the fact that the zeros of the polynomial 1 — 7(p)T +
p'tT? are complex conjugates (the discriminant of the corresponding monic polynomial is

p~2(1(p)? — 4p™)).



It is remarkable to see that Ramanujan, who is known to many for his work in analytic num-
ber theory, here reduces everything to purely algebraic questions. Moreover, the conjecture
was indeed proved according to the observations (i), (ii), (iii) and (iv):

If one writes
1-— T(p)T+p11T2 =1—-—a 7)1 —aT)

then the zeros are complex conjugates, if their reciprocals o; and oy are. Since oy -y = p*t,

this holds if and only if .
| o =]z |=p2 .

This was proved by Deligne, and (C) was already shown by Mordell in 1917.

By the way, the function A interested Ramanujan, since it is the g-expansion of an especially
important modular form, and he formed similar conjectures for certain families of these.
These conjectures follow from Deligne’s results as well, because he proved more generally
the Petersson-conjecture, which we will formulate briefly here, without going into the theory
of the modula forms. Hecke showed in 1936, that for a normed cusp formula of weight & for
S Ly(Z) with g-expansion

) =D aqg"  (qg=e"),
n=1

the associated Dirichlet series has a product development of the form
> =11 :
- _ - k—1 _ n—2s’
n=1 n p 1 4pP ot p p ’

if and only if f is an eigenform for all Hecke operators (s.[Se 1]). In this case Petersson
conjectured in 1939 [Pet], that

4, = O(n'z ) for all e > 0
As above it suffices to show: If one writes
1—a,T+p" T = (1 -y T)(1 — ayT)

then

k-1

a1 |[=| s |=p 2

After preliminary work of Eichler, Thara and Shimura, in 1969 Deligne [Del] reduced this
statement to the Weil conjecture, by showing that the polynomial above divides the polyno-
mial P,_;(7) for a smooth projective variety X over F, - for A one has k = 12. For higher
forms see [De 1]and [De 2].



1 Rationality of the zeta function

The rationality of the zeta functions was proved by p-adic methods by B. Dwork in 1960.
In 1964, A. Grothendieck gave another proof, based on the étale cohomology developed by
himself and M. Artin, which also gives the functional equation.

Theorem 1.1 (Grothendieck) Let X be a geometrically irreducible smooth projective variety
of dimension d over F,.

(a) For any prime ¢ # p = char(F,) one has

Pi(T) - Py(T). .. Poy(T)

Z(X,T)= Po(T)Po(T) ... Py(T)

where Py(T) =1 —T, Pyy(T) =1 — ¢*T and generally
Py(T) =det(1 — F*T | H(X,Qy)) ,

where X = X XF, F, for an algebraic closure F, of F,, H*(X, Q) denotes the i-th (-adic

cohomology and F* is the endomorphism which is induced on it by the g-linear Frobenius
endomorphism F: X — X.

(b) In particular Z(X,T) is rational, i.e., in Q(7).
(c) One has the functional equation

1

qd_T) — +¢= T Z(T),

Z(

with the Euler-Poincaré-characteristic

2d

E=x(X,Q) = (~1)dimg, H'(X,Q) .

i=0
This is also the self intersection number (A.A) of the diagonal X S X %X

Notation: Z/m or Z/mZ also denotes the constant sheaf with this value on a scheme S with
respect to the étale topology. For an étale sheaf F on S, let H'(S, F') be the i-th cohomology
(¢ > 0). Then by definition one has

H'(S,Q) = H'(S,Z) ®z, Qe .

Note that H(S,Z/¢") is a Z/¢f"-module, and so H*(S,Z;) is a module over the ring Z, =
lim Z /0™ of (-adic integers and H*(S,Qy) is a vector space over the quotient field Q, of f-adic
“—,n

numbers.
We need the following facts about ¢-adic cohomology, where A = Z/m, Z; or Q.
COH 1: Functoriality: A morphism f : S — S induces an A-module homomorphism

frHY(S'A) — H' (S, A).

9



For g : S — 5" one has (gf)* = f*g*. The absolute Galois group Gal(ks/k) acts continously
on HY(X xpk , A) for a scheme X over a field k with separable closure k: For o € Gal(k,/k)
take the action induced by id x Spec(o) : X Xy ks — X Xy ks.

COH 2: Cupproduct: There are A-bilinear pairings
H'(S,A) x H/ (S, A) — H™ (S, A), (z,y) =z y.

These are graded commutative (y -z = (—1)Yz - y) and (in an obvious sense) associative.
COH 3: Kiinneth formula: If X and Y are smooth and proper over a separably closed field

L, and if £ # char (L), then one obtains isomorphisms

Zﬁik HY(X, Q) ® H(Y,Q) — H*(X xY,Q)

TRY = PIT Py
where p; : X XY — X and py : X XY — Y are the projections.

COH 4 Poincaré duality: If X is smooth, proper and purely d-dimensional over a field k,
and if X = X xk, for a separable closure k, of k, then there is a canonical Galois-equivariant
Z/0"-homomorphism for ¢ # char(k)

tr: H*Y(X,Z/0")(d) — Z/ 0",
and the pairing
H{(X,Z/0M ) x H*(X,2/0")(d — j) — H*(X,2/0")(d) 5 7./ 0"

is a perfect duality. Here M (m) denotes the m-th Tate twist of a Z/{™ — Gal(ks/k)-module:
M(m) =M ® Z/{"(m), with

" Sm m >0
R S

Here pm is the Galois module of the £"-th root of unity in k), and MY = Hom(M,Z/l™) is
the Z/¢"-dual of a Z/("-Gal(ks/k)-module M.

COH 5: Finiteness: If X is proper over a separably closed field L, then H*(X, A) is a finitely
generated A-module for all ¢ > 0, A =Z/0", Z; or Qq, £ # char(L).

COH 6: Frobenius endomorphisms: Let X be of a finite type over F,. The [F-linear Frobenius-
endomorphism
F: X=X

is defined as the identity on the topological space X and the ¢g-th power map on the structure
sheaf. If ¢ € Gal(F,/F,) is the arithmetic Frobenius:

o(a) =al foraeF,,

and F* is the map induced by F x id: X = X XF, E — X Xp, ]PTq on the cohomology, then
is
F*=p ' on H(X,A).

10



Proof of Theorem 1.1:
(a) = (b):

Lemma 1.2 (Bourbaki Algebre IV 3, Exercise 3) Let u(T) = > a,, T" be a formal power
n=0
series over a field K. Then w(7) lies in K(7T) (i.e., is the Taylor expansion of a rational

function), if and only if there is an N > 0 that the Hankel-determinants

ay  apM41 .- AM4N

ap+1 Ap42
det(@iyj+Mye, oy = det _

Qprr+N e Qprf4+2N

vanish for all M >> 0.

From (a) we first obtain that Z(X,T) lies in Q,(7). Thus the Hankel-determinants of the
coefficients vanish as in Lemma 1.2. But the coefficients already lie in Q, and with the same

criterion Z(X,T) then lies in Q(7") (this proof shows: Q[[T]] N Qu(T) = Q(T) ) .

Remark 1.3 This proof does not show that the above P;(T) lie in Q[T].

(a) = (c): According to Poincaré-duality COH 4 and finiteness COH 5 one has an isomor-

phism of Galois modules

H'(X, Q)" = H*7'(X,Q¢)(d)
(Notation: MY = Homg,(M,Qy) for a Q-vector space M, M(m) = M ®gz, Z¢(m) for a Z,-
Galois module M, where Z,(m) = limn Z/™(m)). Since the arithmetic Frobenius ¢ operates

on Q¢(m) by multiplication with ¢, we have
det(1 — F p | HY)
= (¢oT) Yidet(F | HZ) - (—=1)%det(d — F~1qT | HZ)
= (¢oT) Ydet(F | H?) - (—1)%det(1 — FT | H*%),

e TR ,qdoz;il are the eigenvalues on H??~" by Poincaré-duality. Thus one has

det(F | H') - det(F | H*") = ¢" fori # d .

Finally consider i = d. Let N, (resp. N_) be the numbers of eigenvalues of F' on H? equal
to q% (resp. —qg). The remaining eigenvalues form pairs 8 # ¢¢37!, so that by — N, — N_
is even.
Therefore we have
det(F, Hd) — qd(bd—N+—N_)/qu++N_)d/d(_1>N_
— qdbd/2(_1)N_

)

where one should note that dbg is always even, since the Poincaré pairing alternating on H¢
for odd d. This implies
Z(X,27) = T[igdet(l — Fgg | H)EO™
—xd d —in(—=1)t!
(¢"T)* ¢+ (=1) [Ty det(1 — FT | H*=))
(_1>N+q7TXZ<X7 T)7

11



where y = 322 (—1)b; is the Euler-Poincaré-characteristic.
For the interpretation of y as an intersection number, we need the following result.

Theorem 1.4 (Lefschetz formula, first version) Write (« - ) for the image of o ®  under
the Poincaré-pairing for X x X

H* (X % X)(d) x H*7"(X x X)(d) = H*(X x X)(2d) 5 Qy ,

where we write H'(—) for H'(—,Qy). Then one has

2d

(a-'8) = S (=1) tr(Boa | H(X))

1=0

where 3 +— ! is the transposition, which is induced by the changing of the factors of X x X,
and on the right side § and « are interpreted as endomorphisms of the cohomology, by the
isomorphisms

H*H7(X x X)(d)

2d , ,

® H?*(X)(d)® H*(X) (Kiinneth formula)
=0

I

I

2d .
& H'(X)Y @ HM(X) (Poincaré duality)
=0

I

d , .
é} Hom(H"(X),H*" (X)) (linear algebra) .
=0

Proof Without restriction, let o € H?**~(X)(d) ® H/(X) and 8 € H*(X)(d) @ H(X),

for instance a« =) a, ® by and =) ¢ ® a; with (a} - a;,) = dpm. Then one has
7 ¢

(- 'B)=>>"(be-co)-ar+ Y (be-co)aw,

¢ I,
thus Tr(Boa | H(X)) = (-1)° ;(bg ccp) = (1) (a-1p8) .

Therefore we now only need

COH 7: Cycle map: There are homomorphisms
cl: CH (X) — H*(X,Q)(j)

where CH’(X) is the group of algebraic cycles of codimension j on X modulo rational

equivalence, such that the intersection product (x - y) corresponds with the intersection
number (cl(x) - cl(y)).

For the diagonal A C X x X, which induces the identity on H*(X), we then obtain

2d

(A-8) = (=1)" tr(id | H'(X)) = x(X, Q) -

1=0

12



With the same methods we now obtain two proofs of 1.1 (a):

First proof of 1.1 (a): Via the intersection theory of algebraic cycles one shows
[ X(Fg)| = (F"-A),

where F™ also stands for the graph of F™ in X x X. Together with the Lefschetz-formula
1.4 above we obtain

Theorem 1.5 (Lefschetz-formula, second version)

2d

(1.5.1) X (Fp)l = (Z1) tr(F" | H'(X, Q).

=0

Furthermore one has the well-known formula

o0 n

(1.5.2) exp(3 tr(am V)%) — det(1 — aT | V)

n=1
for an endomorphism « on a vector space V over a field L of the characteristic 0 (by conside-
ring the eigenvalues of o one only needs to prove the formula for a number « in an algebraic

closure L, so the proposition follows by the equality > o"L- = —log(1 —aT)). Now 1.1(a)
n=1
obviously follows from (1.5.1) and (1.5.2).

Second proof of 1.1 (a): One proves Theorem 1.5 by purely cohomological methods.
Indeed, one obtains the more general fact

COH 8 = Theorem 1.6 (Lefschetz-formula, third version) Let X be a seperated scheme
of finite type over F, and let F be a constructible Qs-sheaf on X. Then one has

2dim(X)
N otr(FLF) =Y (—1)'tr(F" | H(X, F)).
zex™" =0
In particular, for F = Q, we get
2dim(X)
~ " i n i
XE) =X 1= ) (~)'tr(F" | Hi(X, Q) ,
i=0
and thus by the formula (1.5.2) above
oo 2dim X
Z(X,T) = exp (Z | X(F,,) | —> — exp (Z > (=1)itr(Fr | Hi(X, F)))
n=1 =1
2dim(X)
= [ deta—FT|H(X, Q)0
=0

The notations are explained in the next chapters.

13



2 Constructible sheaves

In the following, let all sheaves be sheaves for the étale cohomology.

Reminder 2.1 (compare [Mi]; esp. I §5 and V §1) Let Z be a scheme.

(a) A geometric point of Z is a morphism T — Z, where T = Spec({Q2) for a separably closed
field 2. Equivalent is the specification of a point # € Z (the image of ), and an embedding
of the residue field k(z) into €.

(b) An étale neighborhood of 7 is a commutative diagram

U

/

T

AN

A

)

where U — Z is étale. The étale neighborhoods of T form a projective system, where those
neighborhoods form a cofinal system, for which U is affine, connected, with U — Z of finite
type.

(c) The strict henselization of Z in T is defined as
Ozz =1mI'(U,Oyp) ,
—

where U runs over the étale neighborhoods of Z. Then Oz is a strictly henselian ring, i.e.,
local, henselian, with a separably closed residue field.

(d) If F is an étale sheaf on Z, then the stalk of F in 7 is defined as
Fo=lim F(U)
—

where U runs over the étale neighborhoods of T (In particular, Oz is the stalk of the ring
sheaf G, in T).

(e) Let Z be connected and T a geometric point of Z. Define the functor

7 —  (finite sets)

z' — Homy(z,Z').

finite étale morphisms
b= ¢z: (

and the profinite group
m(2,7) = Aut(¢) = lim Autz(Z')
H

where the limit runs over the finite étale morphisms Z' — Z, i.e., over the finite étale
Z-schemes Z'. Then the induced functor

finite étale finite discrete
O : —

Z-schemes m(Z,T)-sets

14



is an equivalence of categories. For a profinite group G a finite discrete G-set is a finite set
M with an operation of GG such that the stabilizer of any element m € M is open in G.

Definition 2.2 A sheaf F on Z is called locally constant, if there is an étale covering
(U; — Z) such that F | U; is constant for all i.

Remark 2.3 If F in addition is a sheaf of groups and has finite stalks and Z is quasi-
compact, one can deduce from the descent theory that F is given by a finite étale group
scheme H over Z (i.e., F is isomorphic to the functor U — Homz(U, H)). Conversely, if H
is a finite étale group scheme, then the sheaf F represented by H is locally constant with
finite stalks:

Without restriction Z is connected. Then H is connected, because H — Z is closed (as
a finite morphism) and open (as an étale morphism of finite type). Let T be a geometric
point of Z. Then H corresponds to a connected finite m1(Z,7)-set M = m(Z,%)/U, where
U C m(Z,T) is an open subgroup. There is an open normal subgroup N C m(Z,Z) with
N C U, which corresponds to an étale cover

H —H— 7.

If 7 is a geometric point of H over Z, then w1 (H',7) = N, and the restriction of M' = m1(H, T)
to m(H',7) is trivial. This shows that the pullback H' xz H" — H’ of the cover H' — Z is
trivial, as well as the pullback H xz H' — H'. So the restriction of Homz(—, H) to H' is
constant.

According to the Yoneda-Lemma one obtains an equivalence of categories

finite étale (commmutative) P locally constant (abelian) sheaves
group schemes over Z with finite stalks on Z
— Homz(—, H)

We now calculate the stalk of F = Homyz(—, H) at a geometric point T = Spec(£2): One has
Fz = hm Homz(U, H) H Homyz(Spec(Ozz), H)

HOmSpec (Spec((’)z,x), H x 7 Spec(Ozz)

))(Spec(k( 7)), H x5 Spec(k(T)))

= Homy(Spec(k(z)), H) "5 Homy (%, H) = ¢z(H) .

Al

H OMGSpec(k(

Here the limit without restrictions runs over affine étale neighborhoods of Z, hence (1) is
a bijection ([Mi] II 3.3), k(Z) is the residue field of the henselian ring Oz, hence (2) is
a bijection ([Mi] I 4.4), and (3) is a bijection, because for a point y € H over the image
point x of T the residue extension k(y)/k(z) is separable and hence Homy,)(k(y), k(Z)) =
Homy (k(y), Q) for the separably closed fields k(Z) and 2.

Together with the equivalence of categories in 2.1 (e) we get an equivalence of categories for
connected, quasi-compact Z with a geometric point Z:

locally constant abelian sheaves JEN finite discrete
on Z with finite stalks m1(Z, T)-modules

F > Fz.
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There is another characterization of locally constant sheafs.

Definition 2.4 (a) A geometric point T of a scheme Z is called specialization of another
geometric point 7 of Z, if there is a ring homomorphism over Z

@ OZ,E — OZ)@
between the strict henselizations. We then call ¢ (or Spec(y)) a specialization morphism.
(b) If F is an étale sheaf on Z, one obtains a an associated specialization morphism
os Fz— Fy

as follows. Since Spec(Ozz) = lim U, where U runs over the étale neighborhoods of T, ¢
U
corresponds to an element of

lim Homz(Spec(Ozy), U) .

U

Let U be of a finite type over Z without restriction. Since we also have Spec(Ozy) = limV,

Vv
where V' runs over the étale neighborhoods of 7, which can be assumed to be affine without
restriction, one has

Homyz(Spec(Ozg), U) = lim Homz(V,U)
\4
(compare [Mi] IT 3.3). Therefore ¢ corresponds to an element in

limlim Homy(V,U) ,

U \4

hence a morphism between pro-objects (V') — (U). This then induces a homomorphism

Fr=lim F(U) — lm F(V) = Fy .
— —

Remark 2.5 (a) By using pullbacks of sheaves in the commutative diagram

f = Spec(y) : Spec(Ozz) Spec(Ozz)

N

Z

one also obtains ¢, = f* as the following composition:

Fo=(mF)e 2 (" F)(Ozz) 5 (7" F)Oz3) & (" F)y = Fy

where the isomorphism (1) follows from the fact, that T has only trivial étale neighborhoods
for the strict henselian ring Oz, by the same argument this holds for (2) and §. The middle
arrow is induced by the (adjunction) map

T F — fof*n*F = f.n"* F.

16



(b) If F is a constant sheaf, with stalk A, then obviously ¢, is an isomorphism, because all
U and V above can be chosen as connected; then all groups are equal to A and the maps
are identities.

(c) Finally we remark that T is a specialization of 7, if the image point x € Z is a speciali-
zation of the image point y of 7, i.e., is contained in @ In fact, then y is contained in the
image of U for every étale neighborhood U of Z, so that the set Homy(y,U) is non-empty
and finite. Furthermore this set coincides with Homy(Spec Ozz, U), and the projective limit

Homz(Spec Ozg, Spec Ozz) = lim Homz(Spec Ozz,U)

U

of finite sets in non-empty.

Lemma 2.6 Let Z be a locally noetherian scheme. Then an étale sheaf F on Z with finite
stalks is locally constant if and only if all specialization morphisms are bijective.

Proof One direction follows from 2.5 (b). Conversely let all specialization morphisms be
isomorphisms. The question is local, so we can assume that Z is noetherian. Let = be a
geometric point of Z, and let A = F%. Then

=1

with ¢1,...,t, € A and mq,...,m, € N.

There are an étale neighborhood U of T and sections s1,...,s, € F(U), which are mapped
to ts,...,t,. Further we can assume (by passing to a ‘smaller’ étale neighborhood), that s;
is annihilated by m;. We obtain a morphism of étale sheaves

wU : g = (@1 Z/mZth) — f|U,
= U

which maps the basis element ¢; to s;. Here G is the sheaf on U associated to A. ¢y induces
an isomorphism of the stalks

Let Zy, ..., Z; be the irreducible components of Z which contain the image point = of T, let
Zys1, - -5 Zm be the the remaining components and let V' C U be an open subset, that is
generated by removal of the inverse images of Zy1,..., Z,,. If then i;,...,7, are geometric
points of V' over the generic points ny,...,nx of Z1, ..., Zy, we obtain commutative diagrams

gﬁi Fi i

zT Tz

Yz
G —Fz,

~

where we have vertical isomorphisms by specialization transformations (for G by 2.5 (b), and
for F by assumption). Therefore the v7- are isomorphisms. If 7 is now a any geometric point
of V, also regarded as a geometric point of Z, then 7 is a specialization of (at least) one 7;,

17



and we obtain a commutative diagram

¢7i
gm N" Fi n;

[

Yy
Gy — Ty
Therefore 15 is an isomorphism and, since § was arbitrary, ¢ : G|y — F|y is an isomorphism.

Definition 2.7 A sheaf F on Z is called constructible, if any closed subscheme Y C Z
contains an open, non-empty subscheme U C Y such that F|y is locally constant with finite
stalks.

Remark 2.8 If Z is noetherian, it is equivalent that there is a stratification Z = UZ by
finite number of locally closed subschemes Z;, such that F |z is locally constant with finite
stalks for all 2.

Examples 2.9 (a) Let ¢ be prime and pm = ker(G,, N Gn), i.e., the étale sheaf on Z
with

en(U) = {a € T(U,0) | " = 1)
for U étale over Z. Then pn is represented by

pn z = Spec(Z[T] (T = 1)) Xspeezy Z

since one has

Homyz(U, pigm z) = Hom(U,Spec(Z[T]/(T* —1)))
= Homnge(Z[T]/(Tfn - 1)7 F(U’ O)) — MZ”(U> )

where the last image represents a ring homomorphism ¢ on the element (7). If £ is invertible,
then pn 7 is finite and étale over Z: Since these properties are respected by base change, it
suffices to show that

pon 1ty = SpeclZ[ [T/~ 1)

is finite and étale over Z[§] (Note that Z — Spec(Z) factors through SpecZ[$] by assump-
tion). The finiteness is obvious, and g is étale, since the ideal generated by T — 1 and
its derivative ("7~ contains 1 if £ is invertible (compare the criterion [Mi] I 3.4). If ¢ is
invertible, then g is a local constant sheaf with finite stalks. If T = Spec(£2) is a geometric
point of T, then the stalk is calculated as follows:

(ten )z = T g (U) = pren (Oz3) — pon (K(T)) = puen () -

Here U runs over the étale neighborhoods of 7, k(%) is the residue field of Oz, and the next
to last arrow is an isomorphisms by Hensel’s lemma.

(b) If j : U — Z is an open immersion and F is a constructible sheaf on U, then jF, the
extension by zero, is constructible on Z. If F is locally constant, then jF is not in general
locally constant again, e.g., not if Z is connected and () # U # Z.

18



Lemma 2.10 If
f:F—F

is a morphism of constructible sheaves on any scheme Z, then ker f, im f and coker f are
constructible.

Proof It suffices to prove the analogous proposition, where “constructible” is replaced by
“constant with finite stalks”. Then the claim is clear.

Lemma 2.11 Let Z be locally noetherian.
(a) Quotients and subsheaves of constructible sheaves are constructible again.

(b) Extensions of constructible sheafs are constructible again, i.e., if
0>F - F—=>F" =0

is an exact sequence of sheaves, with ' and F” constructible, then F is constructible as
well.

(¢) Tensor products of constructible sheaves are constructible again.

(d) If Z is noetherian, then the following properties are equivalent for a sheaf F on Z:

(i) F is constructible.

(ii) F is a noetherian torsion sheaf (i.e., a noetherian object in the category of torsion
sheaves).

(iii) There is an m € N and j : U — Z étale of finite type such that F is a quotient of
Ji(Z/m). Here j, : Sh(Usg) — Sh(Zg) is the left adjoint functor to j* : Sh(Zg) — Sh(Us),
where Sh(X¢) denotes the category of étale sheaves on X (see [Mi] II Remark 3.18).

Proof We first show (d).

(i) = (ii): Without restriction Z is irreducible. Let U C Z be open, non-empty, such that F
is locally constant on U, and let 77 be a geometric point over a generic point 7 of U. According
to 2.6, for all geometric points T the specialization morphisms

Fz— Fy

are isomorphisms. Let now F; C F, C F3 C ... be an ascending chain of subsheaves. We
have to show that the sequence becomes constant. Since F3 is finite, the sequence of F;5
becomes constant, thus is constant without restriction. The specialization morphisms

Fiz — Fig
are injective by the diagram
Fig—Fiz
./—'.5 — fﬁ .
Let s1,..., s, be generators of F; 5, and let V be an étale neighborhood of 7 so that sq,..., s,

come from sections in F; (V). Then for T over V the maps of stalks F; ; — F; z are bijective,

19



by the commutative diagram

Fi(V) Frg——Fin
-7:1@ *)Jri,f-

Hence the sequence of the F; is constant on the open image V' of V in Z. By noetherian
induction one now can show that the sequence becomes constant on the closed complement
Z — V', and thereby the claim.

(i) = (iii): If j: U — Z is étale, j is left adjoint to j*; in particular one has
Homyz(5(Z/m), F) = Homy(Z/m, j*F) = nF(U),

where ,,A = {a € A | ma = 0} for a abelian group A. If T is a geometric point of Z

and f € Fz, one hence obtains m € N and U as above, such that f lies in the image of a

morphism j,Z/m — F (This means that the sheaves j,Z/m are a family of generators in the

category of torsion sheaves). If now F is noetherian, then there are finitely many Uy, ..., U,
and myq,...,m, and a surjective morphism

& (ih2fmi — F.

The claim now follows with U = [[U; and m = LCM (m;).
(iii) = (i) Choose a surjection

o pl/m—» F .
Since jZ/m is obviously constructible, hence noetherian, by the same arguments as above
we get an epimorphism

JZ]m — ker ¢
for an étale morphism of finite type j' : U’ — Z. By the claim shown at the beginning of the
proof F is constructible, as cokernel of a morphism

From this we easily obtain (a): The claim on quotients follows at once with the criterion (c)
(iii); hence the subsheaf F’ of a constructible sheaf can be constructed as the kernel of the
morphism of constructible sheafs F — F/F'.

(b): Tt suffices to show the corresponding proposition for locally constant sheaves. Let
0=>F - F—=>F' =0

be an exact sequence of sheaves. If 7" and F” have finite stalks, this obviously holds for F. Let
F' and F" be locally constant. If  and y are geometric points of Z, and if ¢ : Ozz = Ozy
is a specialization morphism, we obtain a commutative diagram with exact lines

0—>FL—>Fp—> F 0

x T

Jé- % |+

0 —>F,—Fy—F! —0.

If the vertical specialization morphisms ¢, are isomorphisms for " and F”, then this holds
for F as well by the five lemma. Thus the claim follows with Lemma 2.6.

(c): Tt suffices to show this for locally constant and then for constant sheaves, and the
proposition follows.
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3 Constructible Z,~sheaves

Definition 3.1 (see SGA 5 VI) (a) A Z,-sheaf F on a scheme Z is a projective system
i —=>Fo1i > Fo— .= A

of sheaves on Z such that the following holds:
(i) F, is annihilated by ¢* and hence is a Z/{"-sheaf,
(ii) Fri1 /0" Fpi1 — Fy, is an isomorphism. Below we write F = (F,).

(b) Morphisms of Z,-sheaves are morphisms of projective systems, therefore commutative
diagrams

Fpir —=Fp—> ... —=F
| |
Gnt1 Gn . G

(Because of (a) (ii) we have:

Hom((Fy),(Gn)) = lim Hom(F,,G.) ,

n

where the transition maps are given by

Hom(an, gn+1> — H0m<~rn+17 gn) (—N)> Hom(]:n, gn)) .

(c) As objects, Qs-sheaves are the same as Zg-sheaves, only the sets of morphisms are tensored
by Q.

(d) (naive definition) The cohomology of a Z,-sheaf F = (F,,) is defined as
HY(Z,F)=lmH' (X, F,)

n

The stalk at a geometric point = of Z is defined as

n

For Q-sheaves one tensorizes these groups with Q, over Z,.

(e) A Zy- or Q-sheaf F is called twisted constant, if the components F,, are locally con-
stant sheaves. F is called constructible, if the components are constructible. Constructible
twisted constant sheaves are also called smooth.

(f) The tensor product of two Zs- (or Q,-)sheaves F and G is defined by F ® G = (F,, ® G,,),
with the tensor product of the transition maps. The dual is defined by F¥ = (F,Y), with the
Z/t"-dual F,) = Hom(F,,Z/¢"). Here Hom is the sheaf-Hom, and the transition maps are
formed similarly as in (b).

(g) A sequence
0>F - F—=>F" =0
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of Z-sheaves (resp. Qy-sheaves) is exact, if the associated sequence of stalks is exact for all
geometric points T of Z.

Example 3.2 For (¢ invertible on Z and m € Z set Z, := (Z/¢"(m)) with the obvious
transition maps, where
uﬁm m > 0,

Z]0"(m) = {

(™) m <0

Then Z, = Z,(0) is constant and Zy(m) is a smooth Z-sheaf for all m € Z by example 2.9
(a). Obviously we have Z;(m)" = Z¢(—m) and Ze(m) @ Z¢(n) = Ze(m + n).

Proposition 3.3 Let Z be locally noetherian.

(a) A Zg-sheaf F on Z is constructible if and only if F; is constructible.

(b) A Zg-sheaf F on Z is constructible if and only if for every closed subscheme Y C Z there
is an open non-zero subscheme U C Y such that F | is smooth.

(c) If Z is noetherian and connected, and T — X is a geometric point, then there is an
equivalence of categories

(smooth Z-sheaves on Z) ( finitely generated Z,-modules )

with continuous operation of m(Z,T)

The same holds, if Z, is replaced by Q.

Proof (a): The condition is local, so Z is noetherian without restriction. Let F; be construc-
tible. We show by induction over n, that all F,, are constructible. If this is already proved
for n, consider the exact sequences

(331) 0— gn«/t‘nJrl — fn+1 — fn+1/€nfn+1 = JT"n -0
(3.3.2) FiL 2 Foor )l Foir — (" Fpy — 0,

where the first isomorphism in (3.3.2) follows by iteration from 3.1 (ii):
Foi1 lFni1 = FoJlF, = ... 5 FoJlFy = Fy.

Then Lemma 2.10 implies that ¢"F, 1 and F, 1 are constructible.

(b): For a Zs-sheaf F on Z let
gr’'F .= Ker(F, — Fp_1) =" F,

for r € N (where Fy := 0). Then
grF = G>91 gr' F

is a graded F,[T]-module as follows: define
T : gr' F — gr' ™ F
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as the composition of the morphisms
O, 2 N Fo O Frss) —o T F

and extend the operation to an [Fy-linear operation of Fy[T"]. (Explanation: if F really came

from an object with Z-operation, then we had F, = F/¢"F, and the usual operation of

gr Ly, = @ L"7,/0" 7, 2 Fy[T] on gr F = @ " F /"1 F). The surjections constructed in
r>0 >0

the proof of (a) F; — ¢grPF define a surjection of graded F,[T]-sheaves

o :FT|@F, — gr F

Now we apply the well-known

Hilbert-Lemma 3.4 If F; is a noetherian sheaf, then F,[T| ® F; is noetherian as a graded
F,[T]-sheaf (this is more generally true for an object in an abelian category).

The proof of this claim is easily obtained by examination of a double filtration in F;, compare
SGA 5V 5.14.

As in the proof of Lemma 2.10 (c), one obtains a surjection of graded IFy[T]-sheaves
FT)® G — Ker ¢
with a constructible, graduated sheaf G on Z. Then grF is the cokern of
FT1®G — FT @ F

As F; and G are constructible, it follows that grF is constructible, in the sense that there
exists an open U in Y for every closed Y in Z, so that grF restricted to U is locally constant,
i.e., this holds true for all grP?F. Since locally constant sheaves are closed under extensions
(see the proof of Lemma 2.10 (b)), the claim follows: all F,, are locally constant on U.

The conclusion (c) of Proposition 3.3 is clear; one notes that one has the following equivalence
of categories:

finitely generated (-adic projective
Z¢-modules with ~ systems of finite
continuous operation of 7y (Z,T) discrete m (Z, T)-modules
M — (M/e" M)
EI% (M) (M,,) .

Here an /-adic projective system in an abelian category is a projective system
e = A — Ay — - — Ay

with (i) " A, = 0 and (ii) A, 11 /0" A1 — A, . Finally, from the category and the left hand
side one obtains the category of the Qs-representations of 7 (Z, %) of the left category, i.e.,
the finite dimensional Qg-vector space with continuous operation of 7 (Z, ), if one tensors
the sets of homomorphisms over Z, with Q.
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4 Cohomology with compact support

We record further definitions and properties of étale cohomology, which we need for under-
standing the Lefschetz formula COH 8/Theorem 1.6.

COH 9 Cohomology with compact support: Let X be separated of finite type over a field
k. By Nagata, there is an open immersion p : X — X; into a proper k-scheme X, and for
a torsion sheaf F on X one defines the cohomology with compact support by

HZ(X, ‘F) = Hl(X17N'F) )
where jF is the extension by zero of F to X;: iuF is associated to the presheaf uf F:

F(V) V — X factorizes over X
P _ 7
mF(V) = { 0 otherwise .

Lemma 4.1 (a) H:(X, F) does not depend on the choice of the “compactification” i : X <
Xj.

(b) F — H!(X,F) is an exact d-functor.

(¢) Ifi: Z — X is closed with open complement j : U < X, one has a long exact sequence
.= H™YZ,F)— H(U,F) = H(X,F) = H(Z,F) - H™(U,F) - ...,

where the restrictions j*F, ¢*F are again denoted by F.

To prove (a), one needs

COH 10 Proper base change: Let f : X — Y be proper.
(a) If F is constructible on X, then R’f,F is constructible for all i > 0.
(b) For a cartesian diagram

X’L/)X

A

Y/ ? Y
and a torsion sheaf F on X, the base change morphism
g*R'f.F — R'flg*F
is an isomorphism for all ¢ > 0.

Remarks 4.2 (a) The complicated part is (a); part (b) follows easily, compare [Mi] VI §2.

(b) For i = 0 the base change morphism is defined as follows: since g* is left adjoint to g, it
suffices to define a morphism

fF — 9. fi1g" F = fg.9"F;
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and we define it by applying f, to the adjunction morphism
F — g.g"F.

For ¢ > 0 one obtains the morphism by considering an injective resolution of F.

(c) Let X be a quasi-compact scheme, let k be a field with separable closure ks and let
f : X — Spec(k) be a morphism. If F is a sheaf on X and T denotes the geometric point
Spec(ks) — Spec(k), one has a canonical isomorphism

(R'f.F)g = H(X x4 ke, T*F),

where T also stands for the base change X x; k;, — X of Z. Since R'f,F is the associated
sheaf to the presheaf (g : U — Spec(k)) — H'(X X, U,g*F), and this presheaf has the
same stalks, the claim follows from the compatibility of cohomology with limits (compare
[Mi]IIT 1.16), namely from the equalities

lim H' (X x K, W F) = H/(X xy ky, T*F)

K

where hg : Spec(K) — Spec(k) runs through the connected étale neighborhoods of T, hence
the finite separable extensions K of k inside k,.

In particular, it follows from COH 10 (a) that for proper f and constructible F on X the
group H'(X Xy ks, 75 F) is finite. As a special case, viz k = k,, F = Z/{™, we obtain COH 5.

(d) If f: X — Y is proper, § — Y is a geometric point, and if

XgLX
/| lf

y——=Y

is a cartesian diagram, then it follows from (c¢) and COH 10 (b) that for torsion sheaves F
on X there are canonical isomorphisms

since the left hand side is isomorphic to (7*R'f,F)y and the right hand side is isomorphic
to (R fl7"*F)y.

Proof of 4.1: We only prove (a); (b) and (c) follow easily from the exactness of p, see [Mi]
IIT 1.29.

Let v : X — X, be another compactification of X. By considering the closure of X in
X1 x X, one can assume without restriction that there is a morphism ¢ : X; — X, with
g = v. Then the claim follows from the Leray-spectral sequence for nF,

ES? = HP(Xs, guuF) = HPP( Xy, i F),

if one shows
q | nF q¢=0,
g7 = { 0 ¢>0
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It suffices to show this on the stalks in a geometric point T of X3 (for ¢ = 0 note that g.uuF
and n.F are subsheaves of g,u.F = v, F). But by proper base change (see 4.2 (d)) we get

Fz qg=20 and ze€ X
q _ = q _ ) — x 5

(Rig.pnF)z = H(Xyz, nF | X17) { 0 otherwise,

since F| X1z = 0, if the image x of T in X5 is not in X, and since X; z consists only of the
7, if r is in X.

Everything carries over to Z,- and Q-sheaves. In particular, for a proper scheme X of finite
type over a separably closed field L and a constructible Z,-(resp. Qg-)sheaf F on X, the
cohomology H?(Xy,F) is a finitely generated Z;-(resp. Q,-)module. If j : X — X is an
open immersion and F a (constructible) Z,-(resp. Q,)-sheaf on X, then this also holds for 5 F
on X;. It follows that HI(X, F) = HY(Xy, j1.F) is a finitely generated Z,-(bzw. Q,-)module.

26



5 The Frobenius-endomorphism

To explain the last notations of 1.6, we need to consider the following functoriality.

For every morphism f : X’ — X of schemes, one has a homomorphism
(5.1.1) H'(X,F) — H'(X, [*F),
defined by the composition

H(X, F) - HI(X, f.f*F) 25 H(X', f*F),

where « is induced by the adjunction morphism F — f,f*F and [ is the edge morphism
for the Leray-spectral sequence

BY" = HY(X, B1.G) = HP'9(X',G)
for G = f*F. Alternatively,
B HY(X, f.G) = H(X'xxX,G) = H(X',G)

is defined by the canonical identification X’ x x X = X’ and extended to higher cohomology
groups by looking at injective resolutions of G and f.G.

By the commutative diagram

(5.1.2) X'

X —1 .x,

one can identify X’'x xX with X’ by the morphisms pr; and g (which are inverse to each
other).

Now we consider the case that X is a scheme over F,, F is a (usual or Zs- or Q) sheaf on
X,and f=F : X — X is the ¢-Frobenius.

Lemma 5.1 There is a canonical isomorphism
FfX : F - F,F.

Proof: Let U be étale over X, then the commutative diagram

U-—L-u

X X

_F
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induces a morphism of X-schemes
FU/X U — XpxxU .

Since U — X and therefore Xpx xU — X are étale, Fy;/x is étale ([Mi] I 3.6), and since F
is entire and radicial, one can easily see that Fy,x is a isomorphism (compare SGA 5 XV).
We obtain an isomorphism

Fx o (F)(U) = F(XpxxU) — F(U),
which is functorial in U, and therefore the wanted isomorphism.
By adjunction, (Fy)™! gives a morphism

F* F*"F — F.

Lemma 5.2 The induced homomorphism in the cohomology
Hi(X,F) — H(X,F*F) 2 H(X, F)

is the identity.

Proof For i = 0, we obtain this as follows. Let
Ad: F - F.F*F and ad: F*F.F — F
be the adjunction morphisms. By definition, F* is given by the composition

F((F*jz)~h)

F*F F*F:«F > F .

The claim now follows from the commutative diagram

B

~

H(X,F)—2L~ HO(X, F,F*F) HO(X, F*F)

l(F/*z)l (1) iF*F*(F/*z)l (2) \LF*(F/*x)l

HOX, F.F) 2 (X, F,F*F.F) 2~ H(X, F*F.F)

\(3) iF*ad (4) J/ad

HY(X,F.F) —2 —~ H(X, F).

~

Here (1) and (4) are commutative, since Ad and ad are natural transformations, (3) is
commutative by definition of the adjunction morphisms, and (2) is commutative, since [ is
functorial. Finally, (F/*X)_1 and [ are inverse to each other as noted in (5.1.2).

For ¢ > 0 the claim follows by considering injective resolutions, since the functorial isomor-
phism F = F,F also shows that F, is exact.

Let X = X XF, Fq, and let 7 : X — X be the projection. Then we have a commutative

diagram
X
X

Fxid

_

>

-
3

F
E——

S
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and an induced homomorphism

(F x id)'m"F = " F*F 5w F |

We obtain a homomorphism in the cohomology by composition

F=F":H(X,m™F)— H(X,(F xid)*t*F) = H(X,7*F).

Remark 5.3 This can be extended to the cohomology with compact support for a separated
[F,-scheme of finite type, since [ is finite and thus induces a map

H{(X,n*F) — H{(X, (F x id)*t*F) ,

since for a compactification p : X — X, we have i F, = F,u. This gives the Frobenius-
endomorphism in 1.6.

On the other hand, let o : Spech — Spech be the g-Frobenius (i.e., the arithmetic
Frobenius). Then we have the commutative diagram

idxo
X
and hence an equality (id x o)*7*F = n*F. With this we get an induced map

o: H(X,7*F) — H'(X,(id x 0)*F) = H'(X,7*F),

which gives an operation of the Galois group.

X X

Obviously, Fr x o = (Fr x id)o(id x ¢) = (id x ¢)o(Fr x id) is the ¢-Frobenius of X. Now
Lemma 5.2 implies:

Theorem 5.4 We have F = o~ 1.

In particular, this implies COH 6. First of all, there are canonical bijections
Finally we explain the Frobenius-operation on stalks. Initially we need canonical bijections
(5.5.1) Xy — X(F,) = Homg (Spec Fy, X) — Homg, (Spec Fy, X) = X(F,),
(where X denotes the set of the closed points of X ), which are defined as follows: If T € X,
then the composition

pz : Spec k() X P Spec(F,)
is necessarily an isomorphism, and we assign to ¥ the morphism gz = izp5'. The second

map in (5.5.1) is obtained by composing with the projection 7 : X — X. The commutative
diagram

X

N\

Fxid  Spec(F,)

e

Spec(k((F x id)T)) —= X

Spec(k(T))
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shows that the operation of F' x id on X corresponds to the operation of F' x id on X (F,)
(operation by composition). Under the second bijection this corresponds to the Frobenius

operation on X (F), which, because of the commutative diagram

Spec Fq J.ox
Fi lF
= [
SpecF, — X

can be defined by composing f by F' from the left or the right.

In particular, by considering the powers of F', we obtain:

Lemma 5.5 There is a bijection of the fixed modules

——(F"xid) ~

X 2 X (Fyn) .

Now let F be a sheaf on X. For every T € X, regarded as geometric point of X, the
morphism

. F*F— F
induces a homomorphism of stalks

< (F"xid)

For any n € Nwith 7 € X X(F,)f" one then obtains a endomorphism by iteration

Fng:anfoj
If = is the image of 7 in X, one can choose n = deg(z) = [k(z) : F ] and let
F:B:F;eg(x)ifjﬁff.

Up to isomorphism, the pair (F,, Fz) is independent of the choice of (the deg(z) many) T
over z, and thus the term

det(1 — F,T | Fy)

is well defined, i.e., only depends on z; in particular, this holds for
tr(F, | Fz) .
Remarks 5.6 (a) The action on the stalks can also be described by the action of F' X id on
X = X xp, Fg: In fact, Fi can be identified with the homomorphism
Fr = (F xid)} . (7" F)pxicyg = (F x id)"7n* F)z — (7" F)z,

which is induced by the homomorphism (F' x id)* : (F' X id)*7*F — 7*F in the geometric
point T of X (by the canonical isomorphism (7*F)z = Fz, where T denotes pz on the left
and 7z := mpz on the right). This reduces everything to objects (sheaves, endomorphisms
etc.), which are explained for X /F,.
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(b) On the other hand, in the situation above, where everything originates from X/F,, the
operation on the stalks can also be explained by Galois theory. For this note that the Galois
group Gal(F,/k(z)) always operates on the stalk i in the geometric point T of X (x is the
image of 7 in X). If ¢, : a — a?9°8(®) is the arithmetic Frobenius of F, over k(z), then we
have

F, = 90;1 on Fz.
To see this, one notes that one has to show this only for deg(xz) = 1 (by base change to
k(z) = Fjaesw ), since F9°8) is the ¢4°¢*)-Frobenius.
Then F identifies with the Galois module H°(F,, nxF) = H°(Spec(k(z)) xz, Fy, 7 (i5.F))
(where i, : Spec(k(z)) — X, m : Spec(k(z)) xr, F, — Spec(k(z)) are the canonical mor-
phisms), and the claim follows from Theorem 5.4 for X = Spec(k(z)) and the sheaf it F.
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6 Deligne’s theorem: Formulation and first reductions

Together with Grothendieck’s formula one obviously obtains the Weil conjectures I - IIT from
the following result.

Theorem 6.1 (Deligne) Let X be a smooth projective variety over IF,. For every ¢ > 0, the
characteristic polynomial

det(1 — FT | H'(X,Q0)) (¢ #p)
has integral coefficients, which are independent of ¢. If we write

det(1— FT | H'(X,Q)) = [[(1 - oT) witha eQCC,

(e}

then we have _
|a|=¢q2 forall a.

Note: the a are exactly the eigenvalues of F' on H*(X, Q).

Reduction 1 It suffices to show:

W (X,i): For every i > 0 and every  # p, the eigenvalues of F on H*(X,Q,) are algebraic
numbers, whose complex conjugates « all have the absolute value

la|=q2.

Proof Let ¢ be fixed, let P,(T) = det(1 — FT | H'(X,Qy)) and let M; be the set of zeros of
Pi(T). Let
p(T) = 11 K1),

7 uneven

Q) = II AT,

ieven

so that
zix1) = 2D
Q(T)

Let K be a Galois number field which contains all zeros. Then the last equation can be
regarded as equation in K[[T]], and the Galois group Gal(K/Q) operates on this ring by
operating on the coefficient of the power series. For o € Gal(K/Q), 0 Z(X,T) = Z(X,T),
since Z(X,T) € Z[[T]]. On the other side , by W(X,i) for all ¢, the polynomial o P;(T) is
prime to P;(T) for j # i, since o(MM;) is disjoint to M; for i # j. Since all P;(T") have constant
coefficient 1, we have o P;(T") = P;(T), therefore P;(T") € Q[T, since this holds for all o. The
following lemma shows that P and @ even lie in Z[T].

Lemma 6.2 Let P,Q € Q[T] be prime to each other with constant coefficient 1 and P/Q =
Z € Z[[T]]. Then we have P,Q € Z[T].

Proof Let p be a prime number and let A € Q, be a zero of Q(T'). We claim that A7! is
p-integral. If this is not the case, then A is p-integral, thus | A |,< 1 for the p-adic absolute
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value of Q,, normalized by | p |,= %. Since Z has integral coefficients, Z(x) converges for all
x € Q, with | z |,< 1, and we get

in contradiction to the claim that P and () are prime to each other. Since this holds for all
p, the inverse zeros of Q(T') are integral. Since ) has a constant coefficient 1, the rational
coefficients are whole. Therefore we have P(T) = Q(T) - Z(T) € Z|[T].

Furthermore we note that the P;(7T") have integral coefficients, since they have constant
coefficient 1 and their reciprocal zeros are integral as reciprocal zeros of P or ) (one can
use the lemma of Gauss as well). We get the independence of ¢ of the coefficients as follows:
The reciprocal zeroes of P;(T') are the reciprocal zeroes of P(T') or Q(T'), whose complex
conjugates all have the value ¢2. Since the zeroes of P(T) and Q(T) are determined by
Z(X,T), the description is independent of /.

Remark 6.3 (a) The proof above comes from [Fr-K]| (see p. 258). It gives the rationality
of Z(X,T) independently, without using the Hankel-determinants, as did Deligne ([D1] p.
276). Lemma 6.2 seems to be the lemma of Fatou that is cited by Deligne.

(b) Deligne proved generally ([D2]3.3.4) that, for a separated scheme X of finite type over
F,, the Frobenius eigenvalues on H!(X,Qy) are algebraic numbers for every i > 0 and
¢ # p = char(F,). It is still unknown if these numbers are independent of ¢ (# p); one does
not even know if dimg, H:(X, Q) is independent of .

Reduction 2 It suffices to show W (X, ) after passing to a finite extension Fy» of IF,. More
precisely: W(X,i) & W(X xg, Fgn, i), since under base change to Fg, the eigenvalues a
turn to o™ and ¢ turns to ¢".

Reduction 3 It suffices to consider a geometrically irreducible X over any F,. This follows
from reduction 2 and the following obvious fact: If X = ILX;, then we have W(X,i) <
W(X;,i) for all j.

Below, let X be geometrically irreducible of dimension d.

Reduction 4 It suffices to show W(X, ) for i < d. In fact, by Poincaré duality we have
W(X,i) & W(X,d—i): if {a} are the eigenvalues of F' on H'(X,Qy), then {g%a ™"} are the
eigenvalues on H271( X, Q).

Reduction 5 It suffices to show W (X,d) (for all X as above). In fact, we have

COH 11 Weak Lefschetz: If X is smooth projective of the dimension d and ¥ C X is a
smooth hyperplane section, then the restriction map

HZ(X, Qg) — Hl(?, @g)

is bijective for 0 < i < d — 2 and injective for : = d — 1.

The reduction follows by induction over the dimension of X: If, in the situation of COH 11,
one knows W (Y, i) for all i < dim(Y) = d — 1, then, by injection, we also get W (X, i) for
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all 7 < d — 1. Note: by Bertini, there is always a smooth hyperplane section of X, which is
defined over a finite extension of IF,.

Before we continue with the reductions, we show how to derive COH 11 from the following
fundamental properties of the étale cohomology.

COH 12 Weak Lefschetz (second version): If X is affine and of finite type over a separably
closed field L, then for the cohomological dimension cd(X) of X we have

cd(X) = dim(X),

i.e., for all étale torsion sheaves F on X, H'(X,F) = 0 for i > dim(X) (see for example [Mi]
VI 7.2).

COH 13 Poincaré duality (second version): Let X be a smooth separated scheme of pure
dimension d over a field k with separable ending k,, and let ¢ be prime to the characteristic
of k.

(a) There are canonical Galois equivalent homomorphisms (where X = X x;, k)
tr: H*(X,7./0™)(d) — Z./0",

which are compatible with the projections Z /(" —s 7 /0.

(b) If F is a constructible locally constant Z/¢"-sheaf on X, then the composition of the
cupproduct and tr

H(X, F) x H*¥(X, FV)(d) — H*(X,2/0")(d) = 7./

is a perfect duality (the cohomology groups are finite by 2.9 (c)). (See for example [Mi] VI
11.2).

Lemma 6.4 COH 11 follows from COH 12 and COH 13.

Proof If X is smooth, projective, geometric irreducible over a field k£ and if Y C X is a
smooth hyperplane section, then the complement U = X — Y is affine (for a hyperplane
H C PN PN — H = A" is affine, and a closed immersion X < PV is affine). By COH 12
and COH 13 we have

H{(U,F)=0fori<d=dimX

for every local-constant Z/¢"-sheaf F with finite stalks on U (¢ # char(k) and U = U xy k,
as above). For such a sheaf F on X, the restriction map

H'(X,F) — H'(Y,F)

is bijective for i« < d — 1 and injective for « = d — 1 by the long exact cohomology sequence
in 2.8 (¢) (note that H* = H! for X and Y'). The claim now follows from this for F = Z /("
by passing to the limit.

Reduction 6 (“Rankin’s trick”) It suffices to show the following: For every ¢ there exists a

N >0, so that for all geometric irreducible smooth projective varieties of dimension d over
F, we have:
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W(X,d;N): The eigenvalues of F on H%(X,Q,) are algebraic numbers, whose complex
conjugates « all have the value

vl
=

| |< g2t

Furthermore one can limit it to the dimensions d, which are divisible by a fixed natural
number M.

Proof By the Kiinneth formula, o* is an eigenvalue of F' on H kd(yk, Qy) for every k € N.
By W(X*, kd; N) we have

o |< g% HE,
therefore
[a]< gsta
Since this holds for all &k, we get
d
|af<q?

1

By the Poincaré duality, ¢?a~! is an eigenvalue, therefore also | ¢?a~t |< q%, ie.,

[CIfSW

v

| a|>q2,

where we have equalities and therefore W (X, d). Finally, we can restrict ourselves on k,
which are divisible by M.

Remark 6.5 The trick to consider higher powers, either of X or of sheaves on X, appears in
several places in Deligne’s proof. Deligne writes ([D 1] S. 283) that he was inspired by Ran-
kin’s work [Ran|, where Rankin obtains his estimation for the Ramanujan function (compare
§0 Application 1!), by considering the Dirichlet series

Z 7(n)’n"*
instead of > 7(n)n="°.

Reduction 7 In the statements above, one can replace the terms “the eigenvalues of Fro-
benius are algebraic numbers, whose complex conjugates « have the value | a |< r € R 7,
by the term “the eigenvalues a € Q, of Frobenius have the property that |t |< r for every
embedding ¢ : Q, — C”. In fact, from the last property it follows automatically that a is
algebraic: if « is transcendental over QQ, then for every transcendental number 8 € C there
is an embedding: ¢ : Q, — C with t(a) = f3; since obviously there is such an embedding for
Q(a), and this can be extended on @Q,. With this, | ta | can be large.

Remark 6.6 For the extension of the embedding Q(a) < C to Q,, one needs the axiom of
choice. But it is always possible to choose a finitely generated field K C Q,, where all the
considered eigenvalues lie, so that one only needs the unproblematic embeddings of K. The
embeddings of Q, are more of a comfortable way of speaking.
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7 Weights and determinant weights

The previous considerations suggest the following definitions.

Definition 7.1 Let ¢ be a prime power and n € Z. An element « in a field of characteristic
zero is called pure of weight n with respect to ¢, if it is algebraic and all its complex conjugates
have the absolute value ¢ .

Definition 7.2 Let X be a scheme of finite type over Z and let F be a constructible Q,-sheaf
on X.

(a) F is called pure of weight n € Z, if for all closed points x of X the eigenvalues of F,
on F; are pure of weight n with respect to N(z). Here T : Spec(k(x)) — X is a geometric

point over z, F, € Gal(k(x)/k(x)) is the geometric Frobenius which operates on Fz, and
N(x) = |k(z)].
(b) F is called mixed, if it has a finite filtration ... C F,,_y C F,, C ... F by constructible

sheaves such that the successive quotients F,, /F, 1 are pure. The weights of the non-trivial
quotients are called the weights of F.

Examples 7.3 (a) Qu(m) is pure of weight —2m (F, operates by multiplication with
N(z)™™).

(b) Let X be smooth and projective over F,. If the Gal(F, /Fy)-representation H (X, Q) is
regarded as Qg-sheaf on Spec(F,), then W (X, 4) means that H*(X,Qy) is pure of weight i.

Lemma 7.4 (a) The category of sheaves which are pure of weight n is closed under forming
quotients, subsheaves, extensions, inverse images, and direct images under finite morphisms.

(b) If 7 and G are pure of weight m and n, respectively, then F" is pure of weight —m and
F ® G is pure of weight m + n.

(c) The category of mixed sheaves is closed under the operations in (a) as well as by forming
tensor products and duals.

The claims follow immediately from the compatibility of the operations with forming stalks.
For a finite morphism f : X — Y and y € Y note that one has a Galois equivariant
isomorphism

(fF= @ Fs.
Furthermore, the tensor product is exact on the category of the Q,-sheaves.

The last reduction in §6 motivates the following

Definition 7.5 Let ¢ : Q, — C be an embedding.

(a) For a prime power ¢ and a number a € Q,, r-wy(@) := 2 log,ta| € R is called the

L7w2q(a) )

(b) Let X be of finite type over Z and let F be a constructible Q,-sheaf on X. F is called
i-pure of weight 5 € R, if, for all x € |X]| and all eigenvalues « of F, on Fz, we have:

i-weight of a, with respect to ¢, . (Hence || = ¢

Ny () = B, e, o] = N(x)g.
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(c) The sheaf F is called t-mixed, if it has a finite filtration with successive ¢-pure quotients.

The obvious analogs of 7.4 apply. The first non trivial claims about weights are obtained by
the so-called determinant weights. Let X be a normal geometric connected scheme of finite
type over I, and let ¥ be a geometric point. One has an exact sequence of the fundamental
groups

(7.6.1) 1 — m(X,9) = m(X,9) = Gal(F,/F,) — 1,

where 7 also denotes a geometric point of X, lying over 7j: For normal X, this follows from the
Galois theory of fields: without restriction, 7 lies over the generic point of X, then 7 (X, %)
and 7,(X,7) are the Galois groups of the maximal extensions of the function fields F,(X)
or F,(X), respectively, which are unramified over X or X, respectively, and Gal(F,/F,) is

isomorph to the Galois group of the unramified extension F,(X) - F,/F,(X).

Definition 7.6 The Weil group W (X, 7) is the full inverse image in 71 (X, ) of the subgroup
{F"|neZ}=7C Gal(F,/F,) = Z.

We thus have an exact sequence
(7.6.2) 1—-m(X,9) - W(X,5) -Z—0,

where we denote the homomorphism W (X,7) — Z by deg and call it the degree map.

In the following we consider smooth Qs-sheaves on X. These correspond to continuous Q-
representations of (X, %), but for the following conclusions it is useful to work with Q-
coefficients. Therefore we define

Definition 7.7 A smooth Q,-sheaf F on X is a continuous finite-dimensional Q,-representation
of ™1 (X, y) .

Since m (X, 7) is compact, every Qg-representation comes by tensorizing with Q, from an
E-representation for a finite extension F of Q,. Conversely, every smooth QQ;-sheaf or F-sheaf
gives a smooth Qy-sheaf by tensorizing with Q,.

For another geometric point T of X, m1(X,Z) is isomorph to m1(X,7), and such an isomor-

phism is unique up to an inner automorphisms. Therefore, for every T € X(F,), with image
x in X, one obtains a homomorphism

Gal(Fy/k(x)) = m({2},7) = m(X,7) — m(X,7),

which is well-defined up to conjugation in 71(X,%). The stalk of a Q-sheaf in T is the
Qq-representation of Gal(F,/k(z)), which one obtains by restriction via the homomorphism
above. In particular, the eigenvalues of F), are defined, and one can transfer the notions of
pureness, (-weight etc.

Proposition 7.8 A smooth Q-sheaf F of rank 1 is -pure for every ¢ : Q, — C. More
precisely, the following holds:

(a) Let x : W(X,7) — Q; be the character induced by F. Then y is the product of a
finite character and a character of the form

w s cdes®)
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forace@x.

(b) F is t-pure of weight t-w,(c).

Proof Obviously (b) follows from (a), since

t—w(c)

| X (Fz) [=] (1) |=] e |*59= N()

for all z € |X,|. For (a) is suffices to show that the restriction of x to m(X,7) has finite
order. In fact, then y™ is of the form w — b%°8®) for n big enough, and the claim follows
with an n-th root ¢ of b. But x(71(X,%)) is a compact subgroup of E* for a finite extension
E/Qq, and hence a product of a finite group and a pro-f-group. On the other hand, one can
show (note that ¢ # p):

Theorem 7.9 The image of 71(X, %) in the maximal abelian quotient W (X, %)® of W (X, %)
(= W(X,7y) modulo of the closure of the commutator group) is a product of a finite group
and a pro-p-group.

Proof We just show this for a smooth curve X, since we only need this case later. Let X;
be the smooth compactification of X and let S = X; — X.

First Proof, by class field theory: By this we have a canonical isomorphism

WX, )= K\ A ] or,

z€Xo

where K is the function field of X, A* is _the idele group of K and O, is the completion of
the local ring of X at z. The image of m1(X,7) is the kernel of the degree map on the above
group. But the kernel of the map

WX, )" — WX, 5 =K \A/ [[ 0

(EE(X1)0

is a product of a finite and of a pro-p-group, as a quotient of [[ O, and the kernel of the
zes

degree map on W (X,%)? is the finite class group Pic’(X;) of X;.

Second Proof, geometrical: It suffices to show that for ¢ # p the order of the fixed modules
under the Frobenius F

Hom(m(X,79),Z/¢")F = HY(X,Z/t™*

is bounded, independently of ¢ and n. By Poincaré duality, this group is dual to H}(X, pign ) r,
the cofixed module for F. Because of the exact sequence

HO(S, ppn) — HYX, jugn) — HY (X1, pgn) — 0

it suffices to bound the orders of H(S, jugn)r and H'(X 1, i), and because of the exact
sequence

(7.9.1) 0— A" AT A Ap—0,
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one can consider the order of the fixed modules for an F-module A, since for finite A it
follows from (7.9.1) that A" and Ap have the same order. But

HY(S, pen)" = HY(S, pen) = @ pn (R()) € © k()"

and

_ _ G
HYX 1, o) F 2 0 Pic(X)F = o Pic®(X1)F C Pic®(X))

~—

are contained in finite groups, since we are over a finite field. The equality (1) follows from
the isomorphism Pic(X;) = H'(X,,G,,) and the cohomology sequence to the Kummer
sequence

0—>,ugn—>Gmﬂ>Gm—>0,

since H(X1,G,,) = F; is (-divisible. The inclusion (2) follows from the Hochschild-Serre
spectral sequence, since H'(F,,F, ) = 0 (Hilbert 90) and H(F,,F,) = 0 (cd(F,) = 1). A
geometric proof for the finiteness of Pic’(X;) follows for example from the fact that this is

the set of the F,-rational points of an abelian variety over [F;, namely, the Jacobi variety of
Xi.

By 7.8, the following definition makes sense.

Definition 7.10 Let F be a smooth Q-sheaf on X and let ¢ : Q; — C be an embedding. The
t-determinant weights of F are the numbers % - (t-weight of AYG), where G is a composition
factor (= irreducible subquotient) of F and g = dim G.

Non-trivial claims about determinant weights follow from the theory of algebraic (monodro-
my) groups.

Definition 7.11 Let F be a smooth Q-sheaf on X. Let G; be the Zariski closure of the
image of 7 (X, y) in GL(F) and let G be the semi-direct product of Z with Gy, which makes
the diagram with exact rows

commutative (if I € deg™'(1), then F normalizes the normal subgroup (X, 7), as well as
G, the operation is algebraic, and G is a semi-direct product of < F' > and G}).

Theorem 7.12 (Grothendieck) Let G be the connected component of the unit in G;. Then
the radical of G is unipotent.

For the proof we use:
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Lemma 7.13 If F is semi-simple, regarded as a representation of m1(X,7), then GY is
semi-simple. (A representation is called semi-simple, if it is a direct sum of irreducible re-
presentation. Analogously, semi-simple objects are defined in an abelian category).

Proof If F is semi-simple, then the restriction to the normal subgroup 71(X,7) is semi-
simple: if W C V = F; is a simple m(X,7)-module, then the sum W’ of its W (X, 7)-
conjugates is a semi-simple 71 (X ,7)-module and has a complement in V' (for W (X,%) and
thus for m(X,7)). Then GY is reductive, i.e., the unipotent radical is trivial (for this, V is
simple without restriction; one uses that a unipotent group always has a fixed vector # 0,
therefore the unipotent radical would have a fixed module 0 # V' # V' ). One has to show
that the maximal central torus 77 is trivial.

W (X,7) operates on T by conjugation and thus also acts on the character module X (77) =
Hom(T,G,,), respecting the finite set E of the characters by which T} operates on V. The
set F generates X (717), since, by assumption, 77 operates faithfully on V. The operation of
W (X, 7) factorizes over a finite quotient of Z, and we can consider the kernel of the operation
without restriction, which corresponds to a base change to a finite extension of F,. Then the
operation on 77 is trivial. But there are only finitely many outer automorphisms which are
trivial on Ty, by another base change the operation on GY is trivial. By passing to an open
subgroup of (X, 7), i.e., a finite covering of X, we get G; = GY without restriction.

Hence we can also assume that G = G{ x Z. Let T be the maximal torus quotient of GY.
This is isogenic to T3, hence we have to show that 7} is trivial. The map W(X,y) —
G — GY — T has the property that the image of 7 (X,7) is Zariski dense. Since T is
commutative, this map is finite by Theorem 7.9, therefore T' = {1}.

Proof of Theorem 7.12 Let F" be a Jordan-Hoelder filtration of V', let P be the subgroup
of GL(V'), which respects the filtration F" and let N C P be the subgroup, which operates
trivially on the quotients of ", and L = P/N. Then G; C P, its image G5 in L is the Zariski
closure of 71 (X, %) in GL(GrV) and the kernel of G; — G4 is a unipotent normal subgroup
of Gy (since N is a unipotent normal subgroup of P). By 7.13, GY is reductive, and the claim
follows.

Corollary 7.14 Let F be semi-simple and let Z be the center of G. Then the kernel and
cokernel of deg : Z — 7Z are finite.

Proof Z N Gy is in the center of Gy and thus finite. Furthermore, in the proof of 7.13 we
showed that there exists an element ¢ in G with deg(g) = n # 0, which commutes with GY.
Then a suitable power commutes with G, i.e., is in Z:

In fact, first we can assume that g operates trivial on G;/GY by conjugation. Then, for
h € Gy, let the element x;, € GY be defined by

ghg ' =uzp-h.

Then xp = x5, and zpy, = Wy (W)~ for B/ € GY. Since GY is a normal subgroup in G, we
get Way(h')™! = x, i.e., x, is in the center of GY. Since this is finite, there is a m # 0 with

g"hg ™" =ay'-h=h

for all h € G.
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Corollary 7.15 Let F be semi-simple and let g be a central element in G with deg(g) =
n # 0. Let 7' be a smooth Qg-sheaf on X, which is induced by a representation V' of G (see
7.11). Then § € R is a (-determinant weight on F if and only if there is a eigenvalue « of g
on V' with |ta| = q7.

Proof Without restriction, V' is simple. Then g is scalar (here, one needs Q-coefficients,
i.e., the Lemma of Schur!), say equal to the multiplication with «, and the eigenvalue on
det V' is equal to a”, r = dim V’. By Proposition 7.8, the determinant weight  is equal to
L. -w(w): If y is the character to det V’, we have |ux(w)| = qw; if one chooses w with

deg(w) = n, then one has |ty (w)| = [|wa]).

Theorem 7.16 (a) For 5 € R, let n(f) be the sum of the ranks of the composition factors
with (-determinant weights . Then the determinant weights of A* F are the sums

> m(B)B

with m(B8) € Z, Y m(5) = a and 0 < m(B) < n(p).

(b) If the smooth Q-sheaves F and F' are of pure (-determinant weight $ and /3, then
F ® F' is of pure (-determinant weight S + ('

(c) Let f: X' — X be a dominant morphism of normal connected schemes, which are of
finite type over IF,. A smooth Q,-sheaf F on X is of pure (-determinant weight £, if and only
if this holds for f*F.

Proof (a) The eigenvalues of Z on A®F are products of a eigenvalues on F, which belong to
different eigenvectors in F. By forming c-absolute valves and their logarithms, one sees that
one just obtains all sums of a determinant weights, where at most n(/3) of them are equal to

5.
(b) is analogous, by considering the algebraic monodromy group of F ® G.

(c) It follows from the assumption that the image of 71(X’) in 7 (X) is of finite index:
since the schemes are normal, it suffices to consider the fiber over the generic point n of X
(Gal(k(n)/k(n)) — m(X) it surjective), and this has a rational point in a finite extension of
k(n). It follows that, for the corresponding Zariski closures G and G, the image of G| has
finite index in G, therefore contains GY. The image of the center Z’ of G’ centralizes GY,
and with the same conclusion as in the proof of 7.14 one can see that it has a finite index in

the center Z of G. This implies the claim.
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8 Cohomology of curves and L-series

Let X be a smooth geometric irreducible curve over I, and let F be a smooth (Q-sheaf on
X, with stalk V' = F5 in a geometric point 7 of X. Let F’ (respectively F”) be the biggest
subsheaf (respectively quotient sheaf) of F, which is constant on X. By (7.6.1), ' and F”
are inverse images of sheaves on Spec(F,), i.e., these come from Q,-representations F’ and
F" of Gal(F,/F,).

Lemma 8.1 (a) H O(X,F) = Vm&ED = F' where V"X denotes the fixed module under
T (X7 y) :

H°(X,F) if X is proper,
0, otherwise

) H(X.7) = {

HYX,F) =1V, xp(—1) = F"(=1), where V_ 5 denotes the cofixed module under

™

(d) If F is an arbitrary constructible Q-sheaf on X and U C X is open, then we have
H*(U,F) — H%(X,F).

Proof (a) follows from the equivalence of categories between smooth sheaves and represen-
tations of the fundamental group. (b) for non-proper X follows from the fact that a smooth
sheaf has no sections with support in finitely many points (it suffices to see this for constant
sheaves). One can also use Poincaré duality and weak Lefschetz. (c) follows from (a) by
Poincaré duality. (d) follows from the relative cohomology sequence for U € X D X — U,
since HY(X — U, F) =0 for i > 0 (X — U consists of finitely many copies of Spec(F,)).

Corollary 8.2 Let o be an eigenvalue of F' on H O(X,F) or HY(X,F) (or respectively on
H2(X, F)).

(a) For every z € X°, a9°8@ (or respectively (¢ a)%°8®)) is an eigenvalue of F, on F (i.e.,
on V).

(b) The number t-wy(a) (or respectively t-w,(a) — 2) is a t-determinant weight of F (i.e.,
the associated (),-sheaf).

For the following we use the Grothendieck-Lefschetz formula

(8.3.1) [T det(t = BT F) ! = [T der(1 — FTIHI(X, 7)) 0

zeXo >0

for a constructible Q-sheaf F on a scheme X of finite type over F,, which follows from
Theorem 1.6 and (1.5.2). The left hand side is controlled by

Proposition 8.3 If we have t-wy(;)(a) < B for all eigenvalues o of F, on F, for all z €

Xo, then ¢ J] det(1 — F, 79| F)~! converges absolutely for |T| < g~ 3—dim(X) (i.e., for
r€Xp

Re(s) > g + dim(X) if T'= ¢ %), and hence has neither pole nor zero in this area.
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Proof Let d = dim(X); then there is a finite covering of X such that every member is
quasi-finite over an affine space Aﬁﬁq (Noether normalization). This implies

#{z € X, with deg(z) =n} < C-¢™

d

with a constant C' > 0 (which estimates the sum of the generic degrees), since Aﬁf-q (Fgn) = Fgn.

The convergence thus follows from the convergence of the geometric series

ST g T

Corollary 8.4 If X is an affine smooth geometric irreducible curve, then we have
rrwg(a) < B +2

for the eigenvalues o of F on H}(X,F).

Proof The right hand side of the formula (8.3.1) is

det(1 — FT|HN(X, F))
det(1 — FT|H2(X, F))

By 8.2 (a) we have t-w,(a) < 4+ 2 for the reciprocal zeros a of the denominator, and by
8.3 this also holds for the reciprocal zeros of the whole fraction.

In fact, let a be an eigenvalue of F' on H2(X,F). By 8.2 (a), (¢ 'a)%® is an eigenvalue of
F, on F, therefore by assumption we have

B> trwne (g a) "5 = —2 4+ 1-uy(a).

On the other hand, if a is an eigenvalue of F' on H!(X, F), then by (8.3.1) and 8.3 (1—waT) #
0 for all |T| < ¢~5~1, hence [ta < ¢5*1, fe., -wy(er) < B+ 2.
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9 Purity of real Q/-sheaves

This chapter treats an important method which is used in both papers of Deligne about the
Weil conjecture.

Definition 9.1 Let F be a smooth Q-sheaf on a scheme X which is of finite type over Z.
(a) F is called totally real, if the coefficients of

det(1 — F,T|F) :=det(l — F,T | %)
are totally real algebraic numbers for every =z € X.
(b) F is called t-real for ¢ : Q, — C, if
vdet(1 — F,T|F)
has real coefficients for all x € X.
Remarks 9.2 If F is pure (respectively, t-pure), then F is a direct summand of a totally real

(respectively, t-real) sheaf, to wit: of F @ FV(—n), if n is the weight (respectively, (-weight)
of F: for o with [ta| = N(x)>, N(x)"-1a~! is its complex conjugate.

Theorem 9.3 Let X be a smooth geometric irreducible curve over F,. Then the composition
factors of a smooth, t-real Qs-sheaf on X are t-pure.

We use:

Lemma 9.4 Let F be a smooth t-real Q-sheaf on X and let o be the biggest (-determinant
weight of F. For every = € Xj and every eigenvalue a of F, on F we have t-wy(y)(a) < o.

Proof By possibly omitting a point which one does not consider in the moment, X is affine
without restriction. Then the Lefschetz formula gives

vdet(1 — FT | HN(X, F&%))
vdet(1 — FT | H2(X, F®2*))

(9.3.1) [T ¢ det(t — BT | Foky-t =

rx€Xp
for every positive integer k. Here

Tn-deg(:r)
cdet(1 — T80 | o)1 = exp(S e | Fo2)———

n>1

n

is a formal power series with non-negative real coefficients, since by assumption
Ir(E™ | FOFY = Tr(F™ | F)*

is non-negative real. By 7.16 (b), the (-determinant weights of F®2* are at most equal to
2ko, and hence by 8.2 (b), the right hand side of the Lefschetz formula (9.3.1) has no

pole for |T| < q_%(%ﬁz) (i.e., for the reciprocal zeros o’ of the denominator we have ¢-
wy(a’) < 2kp + 2). By the following Lemma,

vdet(1 — T8 | Fo2k)=t
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has no pole for |T'| < q2@*¢t2) ag well. For an eigenvalue o of F, on F, 1o~ 2k/ des()

this implies

is a pole;

|La|2k/dcg(z) < q(2kg+2)/2

— )

ie.,
o] < N(x)et)/2,

Since this holds for all £, the claim follows.

Lemma 9.5 Let f; = > a;, 1" be a series of formal power series with constant term 1 and

non-negative real coefficients. Let the order of f; — 1 tend towards infinity with ¢, and let
f =11 fi- Then the absolute radius of convergence for every f; is at least as big as for f. If

7
f and the f; are Taylor expansions of meromorphic functions, we have

inf{]z| | /(=) = oo} < inf{|z| | fi(2) = oo}

for every 1.

Proof If f = > a,T", the first claim follows from the fact that a;,, < a, for all i. For

n
meromorphic functions, the denoted infima are exactly the absolute convergence radii.

Proof of Theorem 9.3 Let F be a smooth t-real Q,-sheaf on X. For 3 € R, let F(3) be
the sum of composition factors of F with (-determinant weights £ and let n(3) be the rank
of F(B). Let z € Xy, and let o ... ,055(6) be the eigenvalues of F, on F(3). We have to

show that L—wN(x)(af) = (3 for all 3.
By definition of the determinant weights we have
(9.3.2) Y e (ef) =n(B)8.

Without restriction, let F(5) # 0, and let N be the sum of those n(vy) with v > . By
7.16 (a), for the (-determinant weights p of the (N + 1)-th external power of F we have

n(y)
p < B+ 3 n(y)y. Since every o J] [] o7 is an eigenvalue of F, on AN*'F, by Lemma
¥>B > =1
9.4 we have
CWN () (@) + Z Z N () < B+ Z n(y)y-
y>B8 i v>B

By equation (9.3.2) (for every v > () we have

L‘wN(x)<ai) <B.

By adding over i, one has to obtain equation (9.3.2) for 3, therefore the equality holds.
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10 The formalism of nearby cycles and vanishing cycles

For induction over dimension, Deligne uses fibrations f : X — S over a smooth curve .5,
where f is smooth over an open set U C S, and only over finitely many points s € S — U has
fibers with (mild) singularities. The cohomology H'(X, F) is studied by the Grothendieck-
Leray spectral sequence

HP(S,RIf.F) = H'™(X,F).

To examine the sheaves R?f,F at the bad places s € S —U, one passes to the local ring Og ,
(which is a discrete valuation ring), or rather to its henselization O%; this is a henselian
discrete valuation ring.

For the étale topology, a strict henselian discrete valuation ring A is an analog of the open
disk D = {z € C | |z| < 1} in C: We have 7 (D) = 0 and 71 (D ~ {0}) = Z; this corresponds
to the fact that m;(Spec(A4)) = 0 and

m1(Spec(A) — {s}) = H Zy ,

£# char(k(s))

where s is the closed point of Spec(A). The point s corresponds to the point 0 € D, and the
generic point 1 corresponds to a “general point” t € D — {0}.

In classical topology, one has the theory of vanishing cycles for a fibration f : X — D, with
f smooth on D* and singular fiber X, over 0. In étale topology, one considers the cartesian
diagram

X, X X,

]

n——s Spec(A) <—

Preliminary considerations 10.1 Let 7" = Spec A be for a henselian discrete valuation
ring A.

(a) By the decomposition theorem there is a equivalence of categories between the category
Sh(T.;) of the étale sheaves on T" and the category of all triples (Fy, F1, ), where
(i) Fo is a sheaf on the closed point s < T,

(ii) F; is sheaf on the generic point 7 LT, and
(iii) ¢ : Fo — i*j.F1 is a morphism of sheaves.

Here, a sheaf F on 7' is mapped on the triple
(" F,j*F, sp:i*F —i"j.j"F),

where one obtains the so-called specialization morphism sp by applying ¢* to the adjunction
morphism F — 7,.7*F.

(b) This has the following reinterpretation via Galois modules: Let k(n) be a separable

closure of k(n) and let 7 = Spec(k(n)) — T be the associated geometric point over 7. This
defines a geometric point 5 — T over s as follows. Let A be the integral closure of A in k(n)
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, i.e., let T = Spec (A) be the normalization of 7 in 7. Then A is local and its residue field
is a separably closed extension of k(s) and defines a geometric point § — T over s. Further
one obtains a surjection

Gy = Gal(k()/k(n)) = Gs = Gal(k(3)/k(s))

its kernel I is called the inertia group. The strict henselization O} 5 of T in 5 can be identified
with A7,

The triples in (a) thus correspond to triples (My, M;, ¢), where

(i) My is a discrete Gg-module,

(ii) M, is a discrete G,-module, and

(iii) ¢ : My — M{ is a morphism of G-modules.

The passage from the triples in (a) to these is obtained by forming the stalks, i.e., via

M():]:gz(’i*f)g and Mlzfﬁ:(j*F)ﬁ,

where one checks that i*j, corresponds to forming the fixed modules under I.

(c) It follows easily from the definitions that the composition
N
is just the specialization map on the stalks, induced by the morphism
O?’,g — O%ﬁ = k(n)s

(compare 2.4). In particular, F is locally constant if and only if I acts trivially on 5 = M;
and sp is an isomorphism.

(d) If now f: X — T is a morphism and F is a sheaf on X, then the higher direct image
R f,F is described by the triple

(R fuF)s s (R'fF)g, sp: (R foF)s — (R'f.F)7).
If f is proper, then by proper base change this can be identified with a triple
(Hi(X@f), Hi(XﬁwF> , SD - Hi(Xwa) - Hi(X@]:)I)’

where X5 = X X135 = X, Xy k(35) and Xz = X X0 7 = X, Xy k(7) are the geometric
fibers of f at 5 and 7.

10.2 The tool for calculating the specialization map is the general theory of vanishing cycles.
For this we consider a cartesian diagram

J i
(10.2.1) Xn—>X<—XS

| b

7]*>T<737

where f can be arbitrary of finite type. Let k(7j)' C L C k(77) be any intermediate field and
let B be the integral closure of A in L, i.e., T'= Spec B the normalization of 7" in Spec L (in
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the literature both L = K(7)!, i.e., B = Ok, and L = K(7) , i.e., B = A = integral closure
of A in K(7) are considered). If X = X x7 T, then we obtain a commutative diagram

A T

X
a
S

T

(10.2.2)

3|<73>‘<

which arises from (10.2.1) by base change with the bottom row, and in which both squares
are cartesian.

Peﬁnition_/ Lemma 10.3 Let Y be a scheme over a field k£ with separable closure k, let
Y =Y Xk and let u : G — Gal(k/k) be a homomorphism of topological groups.

(a) A G-sheaf on Y is a sheaf F on ?_With a continuous discrete action of G, which is
compatible with the (right) action of Gal(k/k) on Y i.e., for every o € G one has a morphism
0.+ F — (Spec(u(0)).F,
such that 7.0. = (70)., and G operates discretely on F (U) = F((Speco)~'U) for every
quasi compact étale U — Y, U = U Xy k. Let Sh(Y,G) be the category of G-sheaves on Y.
(b) Let m-Y — Y be the projection. Then there is an equivalence of categories (where sheaf

always means etale sheaf)

Sh(Y) = (sheaves on Y) <+ Sh(Y,Gal(k/k)) = (Gal(k/k)-sheaves on Y)
F — T F
(ﬂ_*g)Gal(E/k) ] G ’

For the proof of (b) see SGA7 XIII 1.1. We note that the morphism

o, " F — (Speco). " F Q(Spec 0).(Speco) m*F

is the adjunction morphism (equality (1) follows from the fact that @ = wSpec o).

This allows the definition of the following category and functors.

Definition 10.4 Let Sh(X5s X T) be the abelian category of the triples (Fy, Fi,¢), where
(i) Fo is a Gs-sheaf on X5 |

(ii) F1 is a Gy -sheaf on X5 (with respect to G,, = G), and

(ili) ¢ : Fo — F1 is a Gy -equivariant morphism.

Definition 10.5 Let 7: X — X , 1 : X5 — X, and 7 : X5 — X, be the projections. Then
define

U, : Sh(X,) — Sh(Xs,Gy)
Uz Sh(X,) — Sh(Xs G,) (operation with respect to G, — Gj)
U o Sh(X) — Sh(XzxT)
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\Ijgf = WS.F
U F = ij,mF

VF = (rF, 5, 0F irF 77 7w F)

= (‘IJEZ*fa \Ijﬁj*?? QOF) .

These functors are additive, left exact and have right derivatives R'Ws, R'"W5 and R, resp.
RV5, RVU5 and RV in the derived categories: If 7 < I*® is an injective resolution, then RUF
is represented by W/® (unique up to unique homotopy), and is called the complex of nearby
cycles, and R'WF = H(VI®) (i-th homology object, unique up to unique isomorphism) is
called the i-th sheaf of nearby cycles, similarly one has R'U; and R¥y, whereas U5 is exact
and has no higher derivatives.

One can interpret a complex in Sh(X5z xT) as an object (Fg§, Fr, ), where F§ is a complex
in Sh(Xs, Gs), Fy is a complex in Sh(Xz, G,) and ¢ : F§ — F7 is an equivariant morphism
of complexes. If we define the functor
sp* 1 Sh(X5,Gs) — Sh(X5,Gy)
by sp*Fo = Fo , with G, -operation via G, — G, then we can also interpret ¢ as a morphism
w:sprFy — Fp

of complexes in Sh(X5, Gy). To each triple (F3, F7, ) one can functorially assign a short
exact sequence
0 — F; — Cone(p) — sp* Fg[1] — 0

where Cone(y) is the cone of ¢ (see [Mi]S.174,167). If we set
O(F5, F1, ) = Cone(ep) ,

then ® maps quasi-isomorphisms to quasi-isomorphisms, and for a sheaf F with injective
resolution F < I°®, the complex

ROF := ORUVF (=oUI[*)

is unique up to unique quasi-isomorphism, hence well-defined in the derived category of

S(X5,Gp).
Definition 10.6 R®F is called the complex of vanishing cycles. Set
R'®F = H'(R®F) (= H'(®VI*))

for the i-th sheaf of vanishing cycles of F.

By construction, for every F in Sh(X,;) we have a distinguished triangle of complexes in

Sh(Xs, G,)

(10.6.1) sp*i*F — RUzF — ROF — sp™i* F[1]
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which is well-defined in the derived category of Sh(Xz, G,) and functorial in F. Here, we
should have written sp*Wi* F, but we identify Sh(Xs) and Sh(Xz, Gs) via Uz and we also
write sp* for sp*Ws. For an injective resolution F < I*, (10.6.1) is represented by

71T T — Cone(Tad) —

where we suppressed 7*. In the following, we often omit 7*, 7§ and 7}. Note that i F is
quasi-isomorphic to 7 I°.

Somewhat more imprecisely we can also write (10.6.1) as
i F—1iRjjF— ROF — .

But by this it is not so clear that we consider complexes of G,-sheaves; and apart from that,
one can not define R®F by this: note that the formation of cones is not well-defined in
the derived category. The use of triples as above overcomes this problem and gives a more
rigidified version.

10.7 In the formalism of vanishing cycles, the operation of the inertia group I C G, is
described by the so-called variation: If o € I, then, by the trivial operation of I on sp*i*F, the
endomorphism o — 1 of RUzF factorizes over R®F, and we obtain a canonical commutative
diagram

(10.7.1) sp*i*F —= RV, F — > ROF — >

o T

sp*i* F —— RUzF —— ROF —— |
which is functorial in F. The induced morphism
Var(o) : ROF — RUzF

(and the map induced herby in the cohomology) is called the variation of o. Because of the
trivial formula
(cr—1)=(c-1)+(r=1)+(c—=1)(r—1)

one has

Var(or) = Var(o) + Var(r) + (o — 1)Var(r)

(10.7.2) =Var(o)+ Var(r) + Var(o)(r — 1) .

The theory of vanishing cycles has the following application: By forming the long exact
cohomology sequence on Xz for (10.6.1), one obtains a long exact sequence of G,-modules

(10.8.1) — H"(Xs,i*F) 5 H" (X5, RUzF)—H" (X5, ROF) - H" " (X, F)— ... .

Furthermore we have the following properties.
Lemma 10.8 (i) There are canonical homomorphisms
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(a) U : H"(Xy, ] F) — H"(Xs, RU,F) for all sheaves F and all v € Z
(b) O : HY (X5, RUF) — HY(Xy,j F) for all torsion sheaves and all v € Z.

(i) (a): W is contravariantly functorial for open immersions p : U < X i.e., the diagram

HY (X7, ] F) —2+ HY(X5, RUF)
i”* lm
HY(Uy, 7 Flv) —%= HY(Us, RV Fly)

is commutative, and this is compatible with composition of immersions

(b): W' is covariantly functorial for open immersions p : U < X, i.e., the diagram

HY (X5, RV F) —— HY (X5, 7 F)

v £

Hé/(U@ Rq]ﬁF|U) HH?(UWJ*HU)

is commutative, and this is compatible with compositions of open immersions.

(iii) If f : X — T is proper and F is a torsion sheaf on X, then (a) and (b) are isomorphisms
which are inverse to each other.

(iv) The composition
H"(X5,7 F) 2 HY (X5, 7 F) % H"(Xy, RU,F)
is equal to the map ~ in (10.8.1).

Proof (i) (a): For every sheaf G on X7 define the composition

(10.8.2) v HY (X5, 0) B BY(X, R7,0) 3 HY(X5,T"R}.0)

Here, (1) is an isomorphism (composition of derived functors) and (2) is the base change
morphism, induced by the base change morphism

(10.8.3) i Rf.Rj.G — R(fs):i Rj.G.

If f is proper and G a torsion sheaf, then (10.8.3) is an isomorphism, hence (2) and thus ¥
is an isomorphism. For G = j F we obtain (i)(a), since RU#F = i'RjjF.

(i) (b): Let g : X — X' be an open immersion into a proper S-scheme. It induces a
commutative diagram

i 7
X%C—> X' <—>X§

Xt X <1oX,

with cartesian squares.
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For every sheaf G on X3, by definition we have
H!(X57,G) = HV(X%a (ahG) -
Furthermore we have the just defined isomorphism for the proper S-scheme X’
U HY(X, (g)G) = HY (XL (D) R(T)- (1) G) -
Finally we define a canonical homomorphism
Ut HY (X5, Rj.G) = H'(X4T) R(F). (12)iG)
This is obtained by a morphism
(10.8.4) (=) R7.G = (1) R(F)u ()G

which we get by the following adjunctions. Since (uz) is left adjoint to pZ, (10.8.4) corre-
sponds to a morphism

i"Rj,G — 120 ) RG )y G =7 1 R(F ) (i) G

(note ui = Elﬂg). By definition, we get this morphism by applying 7 to the isomorphism

RE*Q = M*R(EI)*<NW)!Q = Riﬂ%(ﬂﬁ)g
(note that p(ug) = id).
For a torsion sheaf G the morphism
V' HY(X5,1 RjG) — H!(X3,G)
is now defined as the composition W~'W,. For G = j F, with a torsion sheaf F, we obtain
(i) (b). If X is already proper, then W, is the identity and ¥’ = ¥~!; this shows (iii).
Claim (iv) follows immediately from the definition of the base change morphism.

Claim (ii) (a) follows, since the base change morphism (10.8.3) is compatible with restriction
to open subscheme.

For (ii) (b) let p : U — X be another open immersion. The covariance for p regarding
the isomorphism ¥ follows from the fact that U is covariant for the morphism of sheaves
(p7)1(p7)«G — G. For the covariance of W, we need to construct a suitable commutative
diagram

=/ —/

(10.8.5) (ushi Rj.G (0)"R(7 )« ()G

| |

(1)1 (ps)i(iw) R(jp)«(pg)*G —— (1) R(T ) (1) (pn)i3G

with the notations from the commutative diagram

o iy
U, U U
m

T

Xﬁg X QXS

m




Note here that we have a canonical isomorphism of functors
e1: (ps) (i) —(1)"pr,
as well as a canonical morphism of functors
(10.8.6) &2t RG)e — B (o),
which, by adjunction, corresponds to the isomorphism
R(ju)« = R(ju)(pr)"(pr)r = p" Rj.(pp)r

Then we define (10.8.5) by the commutative diagram

=/ —/

/(Ms)!?Rj*g (i )*R(JT)*(M)!Q
(1)1(ps)i (i) R(Gy )+ (p7)*G —— (ps)i” Bj, (o) (p5)*G —— (@ )*R(F () (o)1 (07)*G -

Here the commutative rectangle arises from the functoriality of (10.8.4) for the adjunction
morphism (p5)1(p7)*G — G, € is induced by e and €5, and 7 makes the diagram commutative.

If X is proper over T, then, by Lemma 10.8, (10.8.1) becomes an exact sequence
(10.8.7) ... — H"(X5,"F) B H (X, j*F) — H"(X5, ROF) — H"* (X5, i F) — ...

by replacing H" (X5, RV5F) by H" (X5, F) via W. Hence the study of sp is reduced to the
calculation of R®F.

This is a local problem, more precisely: for a geometric point @ of X5, the stalk (R®F);
in @ depends only on the strict henselization O% ; of X in @, since this holds for Fz and

(Rj,j F)a, and one has a an excellent triangle
Fa— (Rj,j Fla — (ROF)g — .

By the next lemma, RPF is concentrated only in the singular points of f, if F is locally
constant on the smooth locus of f.

Lemma 10.9 If f is smooth and F is locally constant, then R®F = 0.

Proof Since one can test the vanishing on étale neighborhoods, F = A is constant without
restriction. We have to show that

(10.9.1) FA L4 PRILTA

is a quasi isomorphism. We consider the cartesian diagram

S

WHYé Xg
fﬂl lf ifs
7l -T<1 3.
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First we note that the canonical morphisms
ad — —* — ok
A — . Ay — Rj.j A
become isomorphisms after applying i, since for 7 : n — n we have
(R'j,N)s = (Rj,m1.\)s = H”(I, Ind;(A)),

where Ind;(A) denotes the induced module. Furthermore it is known that an induced module
is cohomologically trivial, hence H”(I, Ind;(A)) = 0 for v > 0, while H°(I, Ind;(A)) = A.

This implies the claim of 10.9 by applying ¢ to the base change morphism

since the latter is a quasi isomorphism by the smooth base change theorem, which we will
now recall:

COH 14 = Theorem 10.10 Smooth base change: Let

X’LX

1)

A v

be a cartesian diagram with quasi-compact 7 and smooth f. If F is a torsion sheaf on
X, whose torsion is prime to char(X) (i.e., for all z € X, char(k(z)) = 0 holds or the
multiplication with char(k(x)) is an isomorphism on F), then the base change morphism

[R'n,F — R'n f*F
is an isomorphism for all 7 > 0.

For the proof see [Mi] VI §4: In the Proof of Lemma 10.9, we have f = f and 7 = j.
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11 Cohomology of affine and projective spaces, and the
purity theorem

In this chapter we use the smooth base change theorem for proving three other important
theorems which were used by Deligne.

Theorem 11.1 (Homotopy invariance) Let S be a locally noetherian scheme and let F be
an étale torsion sheaf on S whose torsion is prime to the characteristics on S (This means:
If U — S is étale and a € F(U) and m € N with m - a = 0, then m is invertible on S,
i.e., invertible in I'(S, Og), i.e., invertible in k(s) for every s € S). Then for the morphism
7: AL — S, the induced morphism

™ H' (S, F) = H'(A§, mF),
is an isomorphism for all 7 > 0.

(By iteration one obtains H'(S, F) = H'(A%, F) for all i > 0).

Proof: By considering the spectral sequence
EY? = HP(S, Rim,m* F) = HPY9(Ag, m*F)

it suffices to show:

(i) F = m,m*F is an isomorphism,

(ii) RVmm*F =0 for v > 0

(i.e., F — Rm,m*F is a quasi isomorphism).

Proof of (i) and (ii): Since any torsion sheaf is a filtered inductive limit of constructible
sheaves, we may consider these, and since we can check the vanishing of sheaves on an étale
covering, we may assume that F is constant. Hence we may consider Z/r with r invertible
on S. Furthermore, the claim holds if it holds for all strict Henselizations in all points of S.
We use induction over the dimension of S. Let S = Spec(R) be for a reduced strict henselian
ring with closed point s. For dim(S) = 0, R = k is a separably closed field, and, since r is
invertible in k, we obtain :

H(A},Z]r)

H'(A},Z]r)
H" (A, Z]7)

Z)r,
HY(A}, 1) 5 Pic(A})[r] = 0,
0 for v>1 by weak Lefschetz.

[l 1l

For dim(S) > 0 let U = S ~\ {s}. Then we have dim(U) < dim(S) and we can assume that

the claim is already proven for U. Let U <5 S be the open immersion. In the distinguished
triangle

(11.1.1) Z]r — Rj.JZ)r — G —,

G is concentrated in s (apply j*), and thus G — Rm,7*G is a quasi isomorphism. It thus
suffices to show that

(11.1.2) Rj.j*Z/r — Rm,7*Rj.j*L/r
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is a quasi isomorphism; then by (11.1.1) the claim follows for Z/r as well. But (11.1.2) is the
composition of

1 2
Rj.j*F % Rj.Rrx"j"F = R Rjix"j* F ° Rm.w* Rj.j*F
where F = Z/r, and the morphisms come from the cartesian diagram

(11.1.3) ALCT L AL

v—l-9.
Now (1) is a quasi isomorphism by validity of the claim on U, and (2) is a quasi isomorphism
by smooth base change for (11.1.3) (smooth morphism = p, structural morphism = j).

Next consider projective spaces.

Theorem 11.2 Let g : P = P¢ — S be the m-dimensional projective space over the scheme
S, and let r € N be invertible on S. There are canonical isomorphisms

Z]r(—j) , 1=2jeven, 0 <i<2m,
0 , otherwise

Riq*Z/r = {

More precisely, for m > 1 we have:

(i) R%q.Z/r 2 Z/r(—1), and

(ii) the cupproduct induces an isomorphism (R2q,Z/r)®? = R% q,Z/r for j < m.

Proof The Kummer sequence 0 — i, — G,, — G,, — 0 gives a canonical element 7 €

H?(P%, i), the image of the class of the canonical Op-Moduls O(1) under the connecting
morphism 9

Pic(P) = H'(P,Gy,) > H2(P, 1) .
Denote by 7 also the image of n under the canonical morphism

H?*(P, py) = H°(S, R*q.pir)

(note that R%q.u, is the associated sheaf to the presheaf U — H?(P, u,)). We claim that
R%q.u, = Z/r, with base 7, and that Riq,Z/r = 0 for i odd or i > 2m. By proper base
change it suffices to prove this on the fibers of ¢, i.e., for S = Spec, k k separably closed.
Then we have a decomposition

H=Pr 'SP &AM =P — |,
where H is a hyperplane in P}". The long exact sequence
o= HY(AP) = HY(PP) 5 HY(PPY) — HYPYAP) — .
(constant coefficients) and the fact that we have canonical isomorphisms

0 , VF#2m

HAAg) = g ) = { G
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by Poincaré-duality and by Theorem 11.1, show inductively
H*(P", i) = Z/r, with base 1,
immy ) 0 , 1oddorz>0,
Hﬂ%)—{Zﬁ@ﬁ L 0<i=2j<2m.
To show (ii), it suffices to show that H*™(P%, Z/r(m)) is generated by n™. This follows from
the fact that tr(n™) = deg(n™) = 1.

Now we consider the so-called purity.

COH 15= Theorem 11.3 (Purity): Let S be a scheme and let (Y, X) be a smooth S-pair
of codimension ¢, i.e., one has a diagram

ye P X
~
S
where f and g are smooth, and 7 is a closed immersion such that the geometric fibers Yz — X5
have constant codimension ¢ for all s € S. Let F be a locally constant constructible Z/r-
sheaf, with r invertible on S. Then we have

0 v # 2c,

v, _
le_{ff®mwwr,y=%.

Furthermore R%*4'Z/r is (étale) locally isomorph to Z/r(—c), and compatible with base
change on S.

Equivalent: Let j : U — X the open complement of Y, then F = j,j*F, R'j,j*F = 0 for
i #0,2c — 1, and *R**71j,5*F is locally isomorph to i*F(—c), and compatible with base
change on S.

Proof The equivalence of the conditions follows from the distinguished triangle

(11.3.1) iRI'F — F = Rj.j*F — .

We prove the second version. The claim is local on X for the étale topology, therefore without
restriction F = A is constant and (Y, X) is the smooth S-pair

N —
S.

By induction it suffices to consider the case ¢ = 1, and one can use Agf—l as base, i.e., without
restriction we consider S < AL (the zero section). In the same way we can consider the zero

/

section S < PL (note that for i : S LN AL L PL we have: i = (¢/)'(5)*), i.e., we have to

show the claim for the diagram

Y = S i-PLlOAL =
\lq/
p
s
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For this consider the Leray spectral sequence
ES' = R°q,R'j,A = R"pA.

For t > 0, R'j,A is concentrated in S, since then j*R'j,A = 0 (one has j*Rj.A = A). For
t = 0, we claim that j,A = A. This can be checked in the stalks at geometric points T of
X. For T over U, the claim is obvious; hence let T be over S and let X = Spec Oﬁ(@ be the
strict henselization of X in x. Then we have

(juN)z = H'(U xx X,A),

and hence we have to show that U x x X is connected. Since we took the Henselization in
T, we can assume without restriction that S = Spec(A) is affine, and consider the situation

S < AL = Spec(A[T)) %R Gum,s = Spec(A[T, T ).

Then U xx X = Spec(R[T,T~']), where R = O%z and T also denotes the image of T
in R. Since T is not a zero divisor in R, D(T) = Spec(R[T,T~!]) is dense in Spec(R) (If
() # D(f) = SpecRy is a standard-affine set, then f7" is not nilpotent, hence ) # D(fT) =
D(f) N D(T)). Since R is connected, this also holds for R[T, T~!].

Hence, in the spectral sequence above, we have Réq,R'j,A = 0 for s > 0 and ¢ > 0, since
Réq,i1, F = R%id,F = 0 for s > 0 and every sheaf F on S. Since furthermore R¥*'p, A = 0
for s +t > 0 by Theorem 10.1, we have

0,t

dt
RGN = R g, (j.A) = R q.A

for t > 1. Since R'j,A = i,i*R'j, A for t > 1, we get

*x 1t t+1 ~

"R'j,A —> R q*A_{O fe

by Theorem 11.2, and thus the claim — the base change property follows from the fact that
R'j.A is universally locally constructible (i.e., locally constructible in an arbitrary situation
U’ — X’ obtained by base change (compare [Mi] VI Proof of 2.3, V 1.7).

Remark 11.4 In the situation of 11.3, if S = Speck for a field k, one can show that one
has a canonical isomorphism

R*{'A =2 A(—c)

This provides a canonical isomorphism A = R?*%’A(c), or in other words, a canonical element
in H°(Y, R*i’A(c)) which is also called the local cycle class of Y.
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12 Local Lefschetz theory

In both papers of Deligne the induction principle is given by the theory of Lefschetz pencils.
The idea is to fiber a given variety X over a curve — even over the P! — in the best possible way,
i.e., to to construct a morphism f : X — P! which has mild singularities. Then one can study
the cohomology of a sheaf F on X by using the Leray spectral sequence for f. The calculation
of the higher direct image sheaves R’ f,F is related to the cohomology on the fibers, which
have smaller dimension than X. If the fibers have only mild singularities, then the R f,F
differ only slightly from smooth sheaves, and the cohomology groups H‘(P!, R’ f,F) are
accessible for calculation.

Such a morphism f can not be found in general, but the following result, which we will prove
in §14, suffices for the application.

Theorem 12.1 Let X be a smooth projective variety over a algebraic closed field k. Then
there are morphisms

X <& xLp!

with the following properties:

(i) X is a blowing-up of X in a smooth, closed subvariety A C X of codimension 2, in

particular, X is smooth and projective.

(ii) The fibers of f are smooth except for some fibers over a finite set 3 of closed points in
P}.

(iii) For s € X the fibers X of f over s have exactly one singular point, which is an ordinary
quadratic singularity (see below).

Remark 12.2 The morphisms are constructed as follows. Let X < P¥ be a closed immersion
and let (PY)Y be the duale projective space, which parametrizes the hyperplanes in PY: If
PY has the homogeneous coordinates Xy, ..., Xy, then the point (ag : ... : ay) € (PY)V (k)
corresponds to the hyperplane with the equation agXo+...+axXy = 0. If L 2 P} — (PY)Y
is a line, then this gives a family

(Ht)teIP}C

of hyperplanes, and the hyperplane sections X; = X - H; = X Xpy H,; form a family, for
which the following holds if L is suitably chosen: For ¢; # t; set A = Hy, N Hy,. Then A is
independent of ¢1, t3 and of codimension 2 in X, and (X;) is the family of hyperplane sections
which contain A. There is a morphism

X

!

Py

with fibers X; = X;, and X is the blowing-up of X in A.
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Picture (for surfaces):

>

Furthermore there are lines P. C (PY)Y which satisfy the properties in 12.1. Then 7 : X — P}
is called a Lefschetz bundle and A the axis of the bundle.

We recall the following

Definition 12.3 Let £ be an algebraically closed field and let Y be a scheme of finite type
over k. A closed point y € Y is called an ordinary quadratic singularity, if the completion
Oy, of the local ring Oy, at y is isomorphic to a ring of the form

/{ZHIIJO, R 7$n]]/<g> )

where g € (zg,...,7,)? and
g=Q mod (zg,...,z,)>

with a non-trivial quadratic form Q(xo, ..., z,) which is smooth, i.e., for which the subvariety
in P} defined by @ = 0 is smooth.

If k is arbitrary with algebraic closure k, then y is called ordinary quadratic singularity, if
all points of Y X k over y are ordinary quadratic singularities.

Remark 12.4 (a) The number n is the local dimension of Y at y.

(b) From the theory of quadratic forms (compare Bourbaki Algebre Chap. X) and the Jacobi
criterion for smoothness it follows easily that the following claims are equivalent:

(i) @ is non-trivial and smooth,

(ii) By linear base change, () can be brought into the following standard form @Q,:

ToT1 + Toxs + ...+ Tp_ 12, , if n is odd,
Qn(zo, ... x,) = 9 .
x5+ 2129 + 23T4 + ...+ Tpo1x,, if nis even.

(c) If char k # 2 or n is odd, then this is also equivalent to:
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(iii) the symmetric bilinear form associated to @

B(z,y) = Q(z +y) — Q(z) — Qy)

is non-degenerate, or
(iv) the Hesse matrix ( *Q (0)) is invertible. If these conditions are satisfied, then @ (and

(;LB,L'(;.CEJ'
the singularity y) is called non-degenerate.

(d) If char k = 2 and n is even, then there are no non-degenerate @) and y.

(e) If n = 1, then Oy, = k[[zo,21]](xoz1), and one calls y an ordinary double point. This
notation is sometimes used for arbitrary n.

We now study the morphism f : X — P, = S for the Lefschetz bundle at the bad places
s € . Here we can pass to the henselization O%_; this is a henselian discrete valuation ring.

We consider more generally the following situation. Let 7' = Spec(A) for a henselian discrete
valuation ring A, let s € T be the closed point and 7 € T the generic point. Furthermore let

f: X =T

be a proper surjective morphism. By §10, the higher direct image sheaf Rf,F for a sheaf F
on X is described by the triplet

(R'f.F)s, (R f.F)g, sp: (R'[.F)s = (R'[.F)L),

where I C Gy is the inertia group. Since f is proper, this can be identified by proper base
change with the triplet

(Hi(Xfa f)? Hi(Xﬁ7 f),sp : Hi(ng f) — Hi(Xﬁ7 ‘F)I)ﬂ
where X5 = X X135 = X, Xy k(35) and Xz = X ¢ = X, Xy k(7)) are the geometric
fibers of f at 5 and 7.

The following theorem is the main result of the local Lefschetz theory.

Theorem 12.5 Let f : X — T be a flat proper morphism of fiber dimension n such that
the generic fiber X, is smooth and the geometric special fiber X5 has exactly one singular
point a; let this be an ordinary quadratic singularity. Finally let A = Z/¢" for an r € N and
a prime number ¢ which is invertible on 7.

a) Forv#nn+1, sp: H'( Xz A) — H”(X5,A) is an isomorphism.
( ) 7é > , SP , M p
(b) If n = 2m + 1 is odd, then over an étale covering of T" we have:

(i) There is an exact sequence of Gal(k(7)/k(n))-modules
0— H" (X5, A\) B H" (X, A) S A(m —n) — H™ (X5, A) B H"H( X5, A) — 0.

(ii) Let the so-called vanishing cycle 6 € H"(X7, A)(m) be defined by the fact that a(z) =
< x,6> for x € H"(X5, A) where

<, > H'(Xy, A) X H" (X5, A)(m) — H( Xz, A)(m) 2 A(m — n)
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is the composition of the cup product and the trace map.
Then there is a Gal(k(S)/k(s))-equivariant character
X: I —Z(1),
such that for z € H" (X7, A) and o € I we have the following Picard-Lefschetz-formula
(12.5.1) or =x+ x(0)(x,0)6.
(iii) We have y = a t, for some a # 0 in Z, where
te: I — Zy(1)
is the fundamental character: its reduction modulo ¢" t; : I — per, is given by x(o) =

o(&/m)/ &/m for every prime element 7 in A = O(T).

(c) If n = 2m is even, then, by passing to a finite étale covering of T, there is a non-trivial
character
e: G, — {£1}
such that the following holds:
(i) There is an exact sequence of Gal(k(7/k(n))-modules

0—H"(X5, ) B H" (X5, A) S A(m —n)(e)—=H" (X5, A) B H"™ (X5, A)—0,

where A(m —n)(e) = A(m —n) ® A(e). Here, A(e) = A as an abelian group, with operation
of Gy, via €.
(ii) The Picard-Lefschetz-formula here is

in particular, we have ox = = for o € Ker(e).

We only prove (a) and (b) (i) and (ii), for odd n = 2m + 1, since we need only this below.
We use the following local description of ordinary quadratic singularities.

Lemma 12.6 Let T" = Spec A for a strictly henselian ring A and let f : X — T be a flat
morphism of finite type. Let the relative dimension n of f be odd. Then the fiber X over
the closed point s € T" has an ordinary quadratic singularity in a closed point y € X if and
only if there is a A # 0 in the maximal ideal m of A, so that X at y as an A-scheme is locally
isomorphic to X,, » = Spec R, x at y, for the étale topology, where

Rn,)\ = A[l’g, cee ;xn]/(Qn + )‘>

and y, = Spec (R,»/m + (zo,...,2,)) (i.e., over A there are isomorphic étale neighbor-
hoods of the geometric points y and g, i.e., the strict henselizations O% , and Oy, , ,, are
isomorphic over A). Here we have

Qn(zo, ..., T,) = ToT1 + Toxz + ... + Tp_1Tp
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(compare 12.4 (b)).
Proof: See SGA 7, 2, XV 1.3.2.

Now we use the theory of the vanishing cycles from §10.

In particular, by Lemma 10.9, for an isolated ordinary quadratic singularity as in 12.5, the
complex R®A is concentrated in the singular point a. By 12.6, for calculating the stalk at a
it suffices to consider the following situation, where, as in 12.6, T = Spec A.

Let X C P& be the projective quadric of relative dimension n, which is defined via the
equation
Qn(Xo, ..., Xn) +AX] 1 =0 L0#£FNem,

(with Q as above, hence with n odd). Let Y € X C P"™! be the hyperplane section with
the hyperplane X, .1 = 0, i.e., defined by

Qn(Xo,,Xn):O in <Xn+1:O>g]P)gv,

and let )O( = X — Y be the open complement, which is the singular quadric

Qn(l‘anIn)“‘)\:O

o
= IP’?H — H with coordinates zop = <22, ..., x, = XX—H Then X has
n

: n+1
in an affine space A7 Xpir?

exactly one ordinary quadratic singularity in the point a = (0, ..., 0) of the special fiber )o( s-

Lemma 12.7 The following canonical maps (for ¥ and U’ see 10.8) are isomorphisms for
all i, where A =Z/¢" for r € N and a prime ¢ invertible on 7.

a) H

b) HZ(XS,R\I! A) 5 Hi({a}, RU5z\) = (R"UzA); .
c) H'

d) {a}(XS,R\If aA) — HZ(XS,R\IJ A).

(Xi A) 5 Hi(X5, RUA),

(
(
() Hi(Xs, RUzA) % Hi(X7,A)
(

Proof of Lemma 12.7 (b): By Lemma 10.9, RPA is concentrated in the point a; hence
we have (b) for RPA instead of RU5;A. By the distinguished triangle

sp*As — RUzA — ROA —
X35 1

and the five lemma it suffices to consider A , and the claim (b) follows with Z = X 5 and
f = @ from the first claim of the following lemma.

Lemma 12.8 Let k be a field and let Z C A}*! be defined by a homogeneous equation
f(zo,...,x,) =0. Then, for every r € N invertible in k and all 4, the restriction maps

(1) H(Z,Z/r) — H({0},Z/r)

(2) Hjy,(Z.Zr) — HIZ,Z]r)
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are isomorphisms.

Proof (1): Consider the morphisms

I
(12.8.1) Zf:oiZ x Al "> 7
1 lp
Z

where fO(‘r) = (.T,O), fl(x) = <I7 1)7 m((l’o, s 7'rn)7y) = <y$0, s 7yxn) and p is the first
projection. By Theorem 11.1,

p*: H(Z,Z)r) — H'(Z x A',Z/r)

is an isomorphism. Since pfy = pfi, we conclude that f§ = f; on H(Z x A',Z/r), hence
we also have (mfy)* = fim* = fim* = (mf1)*. But mfy is the map sending everything to
0=(0,...,0), and mf; is the identity. This implies the claim: for the structural morphism
m: Z — Speck and the rational point given by the zero section ig: Spec k — Z we have
mip = id, therefore ijm* = id; on the other hand we also have 7% = (iom)* = (mfy)* =
(2): By assumption Z C A?*! is described by a homogeneous equation f(zg,...,z,) = 0.
Let W C Py be described by f(Xo,...,X,) =0 and let

V=WnNn<X,;1=0>.

Then Z =W —V C W, and the diagram (12.8.1) extends to a diagram

J
(12.8.2) W f: W x Al e

1 lp

w

where fy = (id,0) is again the zero section and f; = (id, 1) is the unit section, and where
w((Xo: oot Xpg1), A) = (Xo oot Xy AXpq). Let W/ =W —{(0:...:0:1)}. For the
morphisms 7 : W = Vix — (Xo:...: X, : 0), and V <y W’ we have i = id and thus
t** = td in the cohomology, and furthermore im = pfy and thus 7" = fju* = fip" =

(uf1)* =id, where the equalities fj = f; follows as in (1). Hence ¢* is an isomorphism. The
claim now follows with the commutative exact diagram

Proof of Lemma 12.7 (a): We want to show the bijectivity of the canonical maps

U H (X7 A) — H (X5, RUSA) .
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By construction of WU it suffices to show that the base change morphism for g : )% 7T,
i"Rg.Rj, A — R(gs).i Rj, A

is a quasi-isomorphism. We have a commutative diagram

X - {a} <"X7— {a}

A
X

yC - X s SAT i 5X

n

\ g J/gﬁ
J —_

.

T

If we set g; = gu’, then, by smooth base change, the base change morphism
91 Rj.Nq— R(jy)A

is a quasi-isomorphism. For simplicity, we assume that 7 = Spec A where A is the integral
closure of A in K (7). Then j is an open immersion and Rj, Ay = j, Ay = A, hence

Rj.A = R(w).R(G,).A = Rw').giA = R(u/).A.
Hence we have to show that the base change morphism
i Rg,Ru' A — R(gs).i Ru'A

is a quasi-isomorphism. There is a distinguished triangle

E— N — RUN—,

in which £ is concentrated in {a}. Since {0} — X-5Tis proper, base change holds for &;
by the five lemma we can therefore replace Ru/ A by A. Since f is proper, base change holds
for Rf., and we have to show base change for Ru,A and 7. By the distinguished triangle

keRE'N — A — Ru A —

it suffices to show base change for Rx'A and Z*._But we have R&'A = R(K')'u*A = R(x')'A,
and the claim follows by purity for the smooth T-pair (Y, X —{a}), which says that R(x')'A
is locally isomorphic to A[—1].

Proof of 12.7 (d): We have a distinguished triangle
sp*A = RUzA — ROA — |

where R®A is concentrated in a. Thus it suffices to consider A, and the claim follows from
12.8 (2).
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Proof of 12.7 (c): The diagram of schemes

VO r.Y M))%T

A

T

induces the following morphism of long exact cohomology sequences

l

‘Ij;o( . Hé(Xg, R\DﬁA)

[¢]

Hé(Xﬁa A)

(1)
Uy = Uy - Hi( Xy, RUzA) —> H' (X, A)

(2)
U =0 HY(Ys, k3 RUpA) = H' (Yg, A)

The rectangles (1) exist by 10.8 (ii) (b), and ¥y is an isomorphism since X is proper over
T.

With the notations from the following diagram

X Jjo X io ¢
Hay I s
j —
X< X Z X;
Ky \ KRs
f n YﬁC ikl f 7 R I3 )? s

the rectangles (2) are induced by the following commutative diagrams of complexes (by
taking global sections):

R(f).iRj,j A Ux T RE.RTT A

| |

R(f?)*;*Rj* (’ig)* (Hﬁ>*j§(A <\IIT E*Rf*Rj* (’iﬁ)* (’fﬁ)*j}/\
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Here, Ux and T are isomorphisms by proper base change. By definition, the bottom right
hand corner gives the cohomology H(Yz, (kq)*jxA) = H'(Yy, A).

For the bottom left hand corner, we have an isomorphism

—% = 1 —% 3 ¥
PRI (n)owiih Y T ROy A

D ko)t Ry ) A D (ks) A,

—
—

—
Nl

in which (1) comes from the composition of derived functors (where k., = Rk,, since k.
is exact), (2) comes from proper base change, and (3) comes from the canonical morphism
A = iy R(jy )\ = R\If%/ A into the nearby cycles of Y, which is an isomorphism, since Y — T’
is smooth.

In the same way, the canonical morphism
A — RUZA
induces an isomorphism
A = rIA = KZRYZA

into the nearby cycles of X, since X is smooth at all points € Y5. Hence the bottom left
hand corner gives the cohomology H* (Y5, k2RU5zA), which shows the commutativity of the
rectangle (2) .

]

Both columns are exact, and this implies that U/(X) is an isomorphism as well.

Now we calculate the vanishing cycles. By 12.7 (a) and (b) we have isomorphisms
H(X5A) —5 (RU5A)g, ;
therefore we have to calculate the geometric cohomology of the smooth quadric )O( y Over 7.
Hence let k be a field, let X C IPZ“ be a smooth quadric of dimension n, given by
q(zg, ..., xpe1) =0,

let Y = X N H a smooth hyperplane section and let )2' = X — Y be the open complement.
Moreover let
2 (mon+1
n € H*(Pr, A1)

be the class of H (i.e., of the associated canonical bundle O(1)), and denote by 71 also the
image of n in H?(X%, A(1) and H?(Yg, A(1)).

Theorem 12.9 We have the following Gal(k/k)-isomorphisms:

(i) For X

(a)

0 , v odd,

HY (X, A)
(XpA) {A(—p) yv=2u#n,0<p<n.
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(b) There is a basis §, of H*(Xz, A(n)) (2p # n) with

nwo__ g,u 7O§21u<n7
7 26, ,n<2u<2n.

(c) If n = 2m is even, then, by passing to a finite separable extension of k, one has Galois
isomorphisms

H*™( X7, A) 2 A(—m) © A(—m),
H?™ (X, A(m))/An™ = A.

(ii) For X: If n = 2m + 1 is odd, then we have

0 v£0,n,
H' (X7 A) = { A =0,
(H*™(Yg, A(m))/An™)Y(=m —1) v=n=2m+1.

Proof (Sketch) (i) One has a long exact cohomology sequence
o= HY (PP — X)) — HY (PR — HY(Xp) — HIPH (P — Xq) —

(with coefficients A), and by weak Lefschetz (P"™! — X is affine, since X is defined by one
equation) we have H, 5(]?%“ — X3) =0 for yp < n+ 1. Hence we get isomorphisms

H”(IP’%H) — H"(X3) for v<n
and therefore the claim (a) for v < n. For v > n, (a) follows by Poincaré duality:
H"(X7) = H™7"(X3)"(—n)
(b) follows from the fact that tryn™ =< H" - X >= deg X = 2: In fact, if, for 2u > n,
one chooses a generator £, with < n"™* -, >=trx n"#¢, = 1, then n* = 2¢,. (Obviously

(a) and (b) hold more generally for a hyperplane X of degree d in P/*!, if one replaces the
number 2 in (b) by d; compare the calculation for complete intersections in SGA 4,XI 1.6).

For (c), we note that, after passing to a finite (separable) extension of k, we can assume via
linear change of coordinates that

m
Q(%, e 7:[:2m+1) = E Tilm41+4 -
i=0

The linear subspace P;* = D AN Pimﬂ defined by
To=T1=...=2, =0

is contained in X (In the terminology of SGA 4, XII 2.7, D is called a “génératrice”). For
the complement we have a well-defined morphism

p:X—-D — P
(.Z'oi...ZSCQerl) — (l’oi...ixm).
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For every standard affine variety U; =< x; # 0 >C P (0 < i < m), we have

p_l<Ui) %A,T X Uz

x x Trtit x

1 2 14 2m+1

= (20:...: Tams1) — (( ";r ) ";r ,...,(%),...,%,p(m)),
K3 3 3 3

where a denotes the omission of a. This shows that X — D is an affine fiber bundle over P}
and p has the same properties as p in Theorem 11.1, i.e.,

p* H'(PY, A) — H'(Xg — D, A)
is an isomorphism. The relative cohomology sequence
—H""!(Dg)=H!(Xy — D)~ H"(Xg)—H" (D)~ H, " (X5 — D)~
(coefficients A) and Poincaré duality

HY(X; — Dp) = H(Xg = Dp)"(=2m) = H'"~ (P

i) (=2m)

provide a commutative diagram with exact row

0 ——= H>™(B)Y(=2m) — H>™(Xg) —= H>™(Dg) —0

|

2m (Tpn+1
H*(PET)

Here the restriction map «o* is an isomorphism, since D is a linear subspace of IP’%H (this
follows immediately from Theorem 11.2). Furthermore, the image of H 2’”([E”%Jrl,/\(m)) —
H*™(X3, A(m)) is equal to An™, and we obtain (c).

(i) now follows from the relative cohomology sequence

S HYNXG) = HYN(Y:) — HY (X)) — HY(X2) S HY () — ...

In fact, by the commutative diagram

H*(X7) H?(YF)
T T (1 <n)
H2 (Pt —=~ H*(Hp)

and by (i), 3 is injective for v = 2m and bijective for odd v and for even v # 2m, v < 2n =
dm + 2 (for ¢ = 2, consider first A = Z/2" for r > 2 and then Z/2). From this it follows

immediately that Hé’()O(E) =0 for v # 2m + 1, 2n, Hf"()O(E) = A(—n) and
HZM (X p)=Coker (™ (Xg) = HP" (V) =(H*" (Y, A(m)) /An™) (=m) .
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The claim now follows with Poincaré duality for )2’ k-

Lemma 12.10 In the general situation of vanishing cycles, for every closed point a € X5
one has a canonical pairing

() (R"WgA)g x HZTY (X5, RUGA) — A(—n).

For every étale neighborhood U of @ in X, this pairing is compatible with the Poincaré
pairing on Uy i.e., the diagram

(12.10.1) (R"U5A)a X HEY (X5, RV UgA) —— A(—n)
H"(Us, R"WUzA) H?*""(Us, R"V5\)
ik |
HV(Uﬁa A) X Hgn_y(Uﬁa A) A<_n>

1s commutative.

Proof: Since
(RV\DﬁA)E - (RV‘;*A)E - IEI)I HV(Uﬁ7 A) 5
U

where the limit runs over the étale neighborhoods of a, the pairing can be defined by passing
to the limit in the diagrams 12.10.1 — note that for U’ — U the diagram of Poincaré pairings

HY (UL, A) X Hf"*”(U%, A) ——=A(—n)

n

T |

H'(Us A)  x  H2 Uy, A) — A(—n)

7R

commutes.
Lemma 12.11 In the situation of Lemma 12.7, the canonical pairing

(R"UyN)g x H5 (X, R UgA) — A(—n)

is non-degenerate.

Proof: By 12.7 (a) - (d), the vertical morphisms in (12.10.1) are isomorphisms for U = )o(,
furthermore the Poincaré pairing is non-degenerate for Uy, since this is smooth.

12.12 Now we collected all tools for the Proof of Theorem 12.5 (local Lefschetz theory)
(a) and (b) (i) +(ii), for n = 2m + 1 odd:

Let f : X — T be flat with precisely one ordinary quadratic singularity a € X5. By the
theory of vanishing cycles, we have a long exact sequence of G,-modules (see (10.8.2))

(12.12.1) — H"(X5,A) 2 H (X5, A) — (RV®A)g — H" (X5, A) 5 H" (X, A) —
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The calculation of (R"®A)g is a local problem, and by Lemma 12.6, we can assume, by
passing to an étale covering of T, that f has standard form, i.e., that X is defined in P
by the equation

Qn(To,s ... 1) + A2 = 0,
for a 0 # A € m. By Lemma 12.7 (a) and (b), we have isomorphisms

Hi<Xﬁa A) % (RiqjﬁA)E

for all 7. Here X, is the complement of the smooth hyperplane section Y, in X, which is
defined in < 2,1 =0 > = ]P’Z by

Qn<ZL‘0, ce ,.I’n) =0
By 12.9 (d), we have

5 0 v#0,n
HV(Xﬁ7A) g A ]/:O,
A(-m—-1) v=n=2m+1.
In fact, for n = 2m + 1, Q, (o, ..., x,) has the form Y  x; x;,114; assumed in proof of 12.9
i=0

(¢), and therefore H*™(Yy, A(m))/An™ = A. Together with the exact sequence
0— A — R%YsA — R°OA — 0

and the isomorphisms
R"zA — R ®A (v >0)
(implied by the distinguished triangle A — RyzA — RPA —) we obtain

0 v#En

(12.12.2) (RPA)g = { A=m—1) v=n=2m+1

This gives isomorphisms

(12.12.3) H"(Xs,A) = H"(Xz,A)  v#nn+1

and an exact sequence of G,-modules

(12.12.4)  0—=H"(Xs, N)BH"( X5, A)SA(m — n)— H"™ (X5, A)—H" (X5, A)—0

i.e., 12.5 (a) and (b) (i).

For the operation of the inertia group I on H™(Xg, A), defined by 10.7, we consider the
variation

Var(o) : ROA — RUzA (cel).
Since R®A is concentrated in a, the map induced in the cohomology factors as follows:

H™(X5, ROA) % Hn( Xy, RU,A)

| |

(R"®A); (X5, RU;A)

Varg(o)
Hr
{a}
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By (12.10.1) we have a commutative diagram of pairings

H" (X, A) x H™(Xg,A) == A(-n)

a:‘l,ai T‘Ij;

(R®A)s 5 (RMUGN);  x Hiy(Xe, RUA - A=),

where the upper pairing is the non-degenerate Poincaré pairing, and the bottom is non-
degenerate by 12.11. Let p be a generator of (R"zA)z(m+1) (= A), let £ be the generator

of Hy,\ (X5, RypmA)(m) with

(12.12.5) (p,&) = 1,

and let
0 = W, (§) € H"(Xz A(m))

Then we have (V,z,£) = <x,0 >€ A(m —n) for z € H" (X7, A), and hence

a(z) = Vu(r) =<xz,0 >
In the exact sequence (12.12.4) we used the identification

H" (X3, A) = H"(Xs, RUzA)
and we note that this is the inverse of

H"(Xs, RUzA) 5 H"(Xq,A).

This implies the formula

-1z = U l(e-1)Tzx
= U~ ! Var(o) Res¥ z
= WV Var,(o) ¥, z

for v € H" (X7, A) , where Res : H"(X5, RUzA) — H"(X5, RPA) is the restriction.

We now recall formula 10.8.2
Var(or) = Var(o) + Var(t) + Var(o)(r—1) .
Since I operates trivial on (R"®A); = A(m — n), the last term is zero, and thus

Varg: I +— Homy ((R®A)z, H{\(X5, R Uz A))
o — Varg(o)

is a homomorphism. If we identify the target with
Homp ((ROA)a(m + 1), Hiy (X5, RY7 A(m))(1) = AQQ) - ¢
w(p) = & (see 12.12.5), and Varz with a character

(12.12.6) x: I — A1), Varg(oc) = x(o)-¢p,
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then we obtain the formula
(c—1ax =V x(o) <x,0> & = x(0) <z,6> ¢
i.e., 12.5 (b)(ii).
Remark 12.13 One can show that the isomorphism
(R™UyA)a(m + 1) = A

is unique up to sign by the construction in 12.9. By this, the vanishing cycle ¢ is determined
up to sign as well. For given x # 0, ¢ as well is determined up to sign by the construction in
the proof and the formula

(c—1z=x(0) <z,0>9.
Compare 12.5 (iii) -for the x in (12.5.5), one can actually show that we have:

x(o) = (D)™ v\ t,

where v is the normed valuation of A and ) is the element of 12.6.
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13 Proof of Deligne’s theorem

After the reductions in §6 (see the reductions 6 and 7) it suffices to show:

Theorem 13.1 Let X be a smooth projective, geometric irreducible variety of even dimen-
sion d over F,. For every ¢ : Q, — C the eigenvalues of the Frobenius on H%(X,Q,) are of
t-weight < d + 1.

Proof We use induction over d (even). The case d = 0 is trivial; solet d =n+1>2, n=
2m + 1. By possible base extension of F, we may assume that X has a Lefschetz pencil
f: X — P P! defined over F,, where, with the notations of Theorem 12.1,

(i) all assumptions of 12.1 hold,

(ii) U = P — ¥ has an [F-rational point u,

(iii) X, = H, - X has a smooth hyperplane section Y,,, defined over F,,.

By a theorem about the cohomology of blowing-ups (see SGA 5VII §8), H%(X, Q) is a direct
factor of H d(}, Qy); more explicitly we have

HYX, Q) = HY(X, Q) © H*(X N 4,Q,)(-1) ,

where A is the axis of the Lefschetz pencil. Since X N A is of dimension d — 2, by in-
duction, H42(X N A, Q) has eigenvalues of t-weight < d — 2+ 1 = d — 1, and hence
H*(X N A, Q) (—1) has eigenvalues of i-weight < d + 1. Therefore it suffices to consider

the Frobenius eigenvalues on H d(f( , Q). We have the Leray spectral sequence
(13.1.1) By = H*(P, R1£.Qp) = H"1(X, Q) ,

which is obtained from the spectral sequences

(13.1.2) BV = H?(P, RI£,7/0"Z) = HP™ (X, Z,/("7)

by passing to a projective limit over Z/¢*7Z and by tensoring with Q, (over the ring Z, =
limZ/¢"7). By the proper base change theorem, all groups in (13.1.2) are finite, and the
<,V

projective limit is exact on projective systems of finite groups; therefore one obtains again a
spectral sequence (13.1.1) from the spectral sequences (13.1.2).

By (13.1.1) it suffices to show that the Frobenius-eigenvalues on E5? are of --weight < d+1 =

n + 2 for all (p,q) with p+ ¢ =d =mn+ 1. Since H?(P,—) = 0 for p # 0,1, 2, these are the
0,n+1 1,n 2n—1
groups E," ", By and By

(A): Consider E3" " = H*(P,R"'£,Q,): Let A = Z/{"Z. For every closed point s of P
and the generic point n of P we noted that the specialization morphism

(13.1.3) (R fN)s — (R" f\)5
can be identified with the specialization morphism

(13.1.4) H"(X5,A) 28 H” (X7, A)
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from Theorem 12.5 (proper base change; see the remarks before 12.5). By 12.5 (a), (13.1.4)
is an isomorphism for v # n,n + 1, therefore in particular for v = n — 1. Hence (13.1.3)
is an isomorphism for v = n — 1, and since this holds for all s, it follows that R"~!f,A
is locally constant (Lemma 2.6). Therefore R" ! f,Q, is smooth, and corresponds to a Q-
representation of w1 (P, 7). But one knows that

(13.1.5) m(P,7) = {1}.

(This follows from the Riemann-Hurwitz formula). Hence R"~!f,Q, is constant on P, and
by Lemma 8.1 (a) we have

H(P, R £.Q0) = (R £.Qu)y

for every geometric point 3 of P. By using ¥ = u one obtains

(R f.Qe)u = H" 1 (Xq, Q) = H"H(X,, Q)

by proper base change. Furthermore we obtain an injection from weak Lefschetz
H" N (X0, Qo) = H" (Y, Qo)

and by induction over dimension (dimY = dim X —2 =n — 1), H""1(Y,, Q) is of -weight
<n<n+2.

(B): Consider Ey™ ™" = HO(P, R"*' f.Qy): From the local Lefschetz theorem we get an exact
sequence for j : U — P:

(13.1.6) ® Qm—n)y — R £.Q — j.j R £.Q — 0,
SEYS

where j,j* R"*! f,Qy is constant on P and Q(m — n), denotes the sheaf Q;(m — n), concen-
trated in s. This follows from the exact sequence

(13.1.7) Qe(m —n) = (R £.Qu)s 5 (R £.Qe)y — 0

(see Theorem 12.5 (b) (i)), and from the fact that f|y : X x, U — U is smooth and proper,
and hence RYf.Qy|y is smooth for all v by the same argument as in (A) (since then the
vanishing cycles are zero, sp is an isomorphism for s € U). Moreover, by the surjectivity
of sp in (13.1.7) for every s € P, the inertia group I, C G5 operates trivially, so that the
operation of (U, 7) factorizes over 7, (P,n) = {1}, which corresponds to a constant sheaf
on P, with value H""(Xy, Q) = H""(X,, Q). Since the functor i, is exact for i : ¥ < P,
we have HP(P,i,G) = HP(X,G) = 0 for p > 0 and every sheaf G on ¥, therefore for every
sheaf F on P, which is concentrated on ¥ (& j*F = 0 < F = i,i*F), hence also for every
quotient of ®;Qy(m — n),. This gives an exact sequence

(13.1.8) S Qu(m—n) — Ey" — H"(X,, Q) — 0

SEY

By weak Lefschetz one has a surjection
Hn_l(?ua(@f)(_]-) - Hn+1(ﬁan€) )

and hence E9™"! is enclosed between sheaves, which have i-weights —2m + 2n = —2m +
dm+2=2m+2=d+1and <n—1+4+142=d+ 1, respectively
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(C): Consider Ey™ = H*(P, R"f,Q;). For this case we need some preparations.

Definition 13.2 Let Z be an irreducible normal scheme and let D C Z be a divisor. Let i
be a generic geometric point of V =2 — D.

(a) For a geometric point @ over a generic point a of D let (’)g’a be the henselization of Z in
a (since Z is normal and dim Oz, = 1, this is a henselian discrete valuation ring), and set

Z(a) = Spec(0%,) and %(a) = Z(a) —{a} = Spec(K,), where K, = Quot(O% ) (which is a

henselian discrete valuation field). Let O3 be the strict henselization of Oz, and let k(1)
be a separable closure of k(7). For every specialization map

Spec(k(n)) Spec(O%)

~,

Z

from 77 to @ (see Definition 2.4; also called a path from 77 to @), the image of the homomorphism

o

m(Z(a),m) = m(V.7),

induced by the factorization Oz, — K, — k(n), is called a decomposition group at a
(which is then well determined up to conjugation in 7 (V,7)). Correspondingly, the image

of the inertia group of my( 7 (a),7m) is called an inertia group at a. (One can also form this by
choosing different geometric “base” points 5 and ¢ instead of 7 for 7 (V, —) and my( 7 (a),—)

— in virtue of the isomorphisms 7 (V,7) = m(X,3) and Wl(é(a),ﬁ) = 7'('1(2(@),%), which
one obtains via specializations of 7 to s resp. t and which are unique up to conjugation)

(b) An étale covering V' of V' is called tamely ramified along D, if for all geometric points a
of D the operation of the inertia groups at a on the 7, (V,7)-set V; = Homy (7, V') factorizes
over the tame quotient of the inertia group.

Remark 13.3 Let V' be a Galois covering of V', with Galois group G, and let Z’' be the
normalization of Z in V' (resp. in the function field of V’). Then the decomposition groups
over a are the groups {0 € G | 0d' =d'} (= {0 € G| 0@ =a'}) for a point @’ of V' over a
(@ € Homy(a, Z'), respectively). V' is tamely ramified at a, if the order of all inertia groups
over a in G is prime to char K(a). Sometimes, one calls Z’ a tamely ramified covering of Z
along D.

It follows that there is a quotient 74 (Z, D,7) of m1(V,7), which classifies all tamely ramified
coverings on V' along D: this is the quotient by the normal subgroup, which is generated by
all decomposition groups over all generic points a of D. An étale covering V’/ of V' is tamely
ramified along D if and only if the operation of 7,(V,7) on V} factorizes over 7{(Z, D,7).
One has surjections

m(V.7) = m1(Z, D,7) = m(Z,7) -

Lemma 13.4 (Lemma of Abhyankhar) Let Z = Spec A be for a regular local ring A, let
fi,-.-, fr be a part of a regular parameter system and let D C Z be defined by the ideal
(f1 - fo...fr) (this implies that D is a divisor with normal crossings). Let V' be an étale
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covering of V. = Z — D | which is tamely ramified along D. Then there are ny,...,n, € N,
which are prime to the residue characteristic p ofA, such that for

Zl = SPSC(A[Tl, e ’TT]/(TITH — fl’ e ,T:LT — fr))
the normalization Z] of Z; in V' x, Z; is an étale covering of Z;:

‘/1/ =V'x Zng{

l i étale

Vi=V Xz Zi~—— 7,

| i

V=Z\D"—F—=7Z7

(Z1 = normalization of Z; in V}). Z] is regular.

The proof is easy, see SGA 1 XIII 5.2.

Corollary 13.5 If, in 13.4, A is strictly henselian, then every connected tamely ramified
covering Z' — Z is a quotient of a Kummer covering 7, as described in 13.4. In particular
there is a canonical isomorphism

tzo = ] z.(1) = Ti(Z, D7),
L#p

where p is the residue characteristic of A.

Proof Since, in the situation of 13.4, the morphism Z; — Z is finite, ['(Z;, Oy, ) is again
strictly henselian ([Mi] I 4.3). Therefore Z] is the disjoint sum of copies of Z;, and the first
claim follows. The second claim follows from the fact that the inverse image V; of V in Z;
is Galois over V' with a Galois group

T
~

G — Hﬂni

e}

o = (o(T)T:) = (o Ti) V)

It follows that the factor u,, can be identified with the (!) decomposition group at the generic
point of Spec A/(f;) C D.

Now we return to our Lefschetz bundle for even n + 1 = dim X. We can assume that the
dimension of the dual variety XV C (PV)V is N — 1: If dimX" < N — 1, then, by 14.16,

there is a line P C (PV)Y with PN XY =), then U = P and f : X — P is smooth. Then
all R¥f,Q, are smooth, therefore constant sheaves on P by (13.1.5), hence Ey™ = 0, since
HY(P,Q,) = Hom(m (P),Q;) = 0. For a generic geometric point 7j of P, we consider the
m1 (U, 77)-Qg-representation (¢ # char(k))

Vo= (Rnf*(@f)ﬁ

Proposition 13.6 By the assumptions, the operation of m(U,77) on V factorizes over
(P, X,7), i.e.,, V is tamely ramified along 3.
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Proof For every s € X, the operation of an inertia group at s is given by the local Lefschetz

theorem 12.5 (b) (ii) for the morphism X xpSpec Op, — Spec Op,. Since with those
notations the operation depends only on a character

X - 1 — Zg(l)

which is necessarily tame (since ¢ is different from the characteristic p of k(s)), the claim
follows.

For a choice of a path from 77 to 5§ (compare Definition 13.2 (a)), let

t s),s — —
¥ [ Ze(1) =5 7l(P(s),{s},m) — 7(P,%,7)
t#p

(p = char(k)) be the composition of the induced homomorphism with the inverse of the
isomorphism of 13.5. Then ~, is well-defined up to conjugation in 7} (P, X, 7).

Proposition 13.7 We assume that P and XV only intersect in the smooth locus of XV, and
that this intersection is transversal (one can assume this by a version of the Bertini Theorem
14.16 ¢)). Let k be separably closed and let

r: m(PY,n) — Aut(V)
be the homomorphism which describes the operation on V. Then the maps

rovys - HZg(l) — Aut (V)

L#p
are conjugate in Im(r) for s € 3.
Proof the cartesian diagram
X _n,
o
P—s (PV)VY

and proper base change gives an isomorphism
V= (Rnf*Q£>ﬁ - (Rng*@é)ﬁ )

which is compatible with the operations of 7 (U,7) and m((PY)Y — XV,7), via the homo-
morphism

7T1<P - Eaﬁ) — ’/Tl((]P)N>V - X\/aﬁ)
(if follows as in (B) that R™ f,Qy is smooth over (PV)Y — XV). By applying the local Lefschetz
theorem to the morphism Hx X @~y Spec <O€ZIP’N)V,a0) — Spec((’)?PN)v, agp), for the generic
point ag of XV (XV is an irreducible divisor) it follows as in 13.6 that (R"g,Qy)7 is tamely
ramified along XV. Then the representation of 7{(P,X,7) on V factorizes over

¢:m(P.27) — m(PY),X".7)
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Thus it suffices to show:

Lemma 13.8 (a) For s € ¥, the morphisms ¢, are conjugate in 7t ((PN)Y, XV, 7).
(b) q : 7t (P, %, 7) — 7t ((PV)Y, XV, 7) is surjective.

Proof Since XV C (PV)¥ = PV is a hypersurface, this obviously follows from the following
result claimed in SGA 7.2, XVIII, 6

Proposition 13.8’ Let Z — P be a hypersurface in the projective space over an alge-
braically closed field k, where » > 2. Let P C P} be a projective line which intersects
Z transversally in its smooth locus. Let a be a geometric point of P~ (P N Z), and let
7t (P, PN Z,a) be the quotient of m; (P~ (PN Z),a) which corresponds to the étale coverings
of P~ (PN Z) which are tamely ramified at all points in P N Z. Then the following holds,
if Z is sufficiently general:

(a) The canonical morphism
q: ﬂ-i(P7 PN 276) - 775@27 Z>a)

is surjective.

(b) For s € PN Z, the morphisms

SGA
6.1.2.1 _ oy
avs [ 2 — m(P,Pnza) - m(P, Z,a)
t#p

are conjugate to each other, if Z is irreducible.

Proof of Proposition 13.8’:

(a): By the commutative diagram with surjective vertical arrows

(P, PN Z,a) —— (P}, Z,a)

T !

(P~ PNZa) L rm(P~ Z,3),

it suffices to show the surjectivity of the lower map ¢. In SGA 7.2 XVIII, 6 the readers
are referred to a suitable Bertini theorem to be contained in a volume EGA V which never
appeared. Fortunately, it appeared in the book “Théoremes de Bertini et Applications”
by Jean-Pierre Jouanolou (Progress in Mathematics, 1983) as the Theorem 6.3. Jouanolou
considers a subscheme in an affine space A" over an algebraically closed field &, but Pi \ Z
is affine and hence can be embedded in a suitable affine space.

For the surjectivity of ¢’ we have to show that, for every connected étale covering E of P\ Z,
the pull-back of E to P~ PN Z is (geometrically) irreducible. Since P\ PN Z — P} \ Z
is a closed immersion and hence unramified, the claim follows from Jouanolou’s theorem, if
Z is sufficiently general.

(b): Let T be the subscheme of the Grassmann variety of lines in P" which
(i) pass through @, and
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(ii) intersect Z transversally in its smooth locus.

Let n be the generic point of T', let i, : P, — P} ® k(n) be the corresponding line, choose a
geometric point 7 over 7, and let Dy be the corresponding line, and let 0 be the point of T
corresponding to the given line.

By SGA 1, XIII 2.8, there is a specialization morphism, depending on the choice of a path
between 77 and 0 in 7', and therefore defined up to conjugation,

sp:m(Py, PN Z,a) — my(Po, PoN Z, @)
such that the following holds:

(i) The morphism -, is obtained as the composition of the local monodromy morphism

t#p

and sp.

(ii) The following diagram is commutative:

(P, Z,a)

] T

i (P,, PN Z,a) (i) i (Py, PhN Z,a)

\/’

Tq(Pﬁ? Pﬁm Zua)
By (i) and the commutativity of (ii), it suffices to show that the local monodromy morphisms

[1z.(1) = =i(Py. P;0 Z,3)
t#p

become conjugate to each other after composition with
i (P, PN Z,a) — w5 (P, P, Z,a) .
For this we note that for every finite Galois extension K/k(n), k(n) C K C k(7), the scheme
Pr := Py Xy K

is an étale covering of P,, and that then Px \ Px N Z is a tame covering of P, \ P, N Z,
which gives an action of 7t (Py, PN Z,@) on Px N Z. If K is sufficiently big, then all points
in Px N Z are K-rational (note that P, N Z is étale over k(n)).

It remains to show that =} (P,, P, N Z,a) operates transitively on the points in Px N Z.
But the acion of 7t (P,, P, N Z,a) on P, N Z factorizes through the canonical quotient
TPy, Py 0 Z,@) = mi(n,7) = Gal(k(7)/k(n))

and the action of this Galois group on Px N Z is the one which is compatible with the
inclusion

PKQZ%PZX]{K,
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where the Galois group acts on the second factor. This shows that our claim is equivalent to
the fact that the scheme D, N Z only has one point (i.e., is the spectrum of a field).

If Z is described by one affine equation F' = 0, and one supposes that @ is the origin, then
our claim amounts to the following claim, whose proof is left to the readers:

Claim: Let k be an algebraically closed field, r > 2, and F(Xy,...,X,) € k[X1,...,X,] an
irreducible polynomial. Then the polynomial

G(T) = F(X\T,...,X,T) € k(X4,..., X,)[T]

is irreducible as well.

Lemma 13.9 7,(U,7n) (and thus 7! (?,_i 7)) is topologically generated by the conjugates
of all inertia groups over s € ¥ (where U = U xy, ks etc. ...)

Proof Otherwise there would exist a non-trivial étale covering of P, — contradiction to
(13.1.5).

Now we consider Ey" = H'(P, R"f,Q,). There are two cases:

(1) If for one s € S an inertia group operates trivially on V' = (R" f,Qy), then, by 13.7, this
also holds for all others, for arbitrary s € X. This implies that R" f,Q; is smooth on P and
thus constant on P, and we have E,”™ = H'(P, R"f.Q,) = 0 (H'(P,Q;) = 0).

(2) In the other case, all inertia groups I operate non-trivially over s € ¥. By the Picard-
Lefschetz formula
or —T = Xs(0> (xa(;s) Os

for 0 € Iy and x € V', where x, : Iy — Z,(1) is a character and
(,): VxV—=Qf-n)

is the Poincaré-pairing on V' = (R" f,. Q)7 = H ”(f(ﬁ, Qq), all vanishing cycles 0, are non-zero
and conjugate to each other under 7t (P,X, 7). By 13.9, the Q,-vector space generated by
the d5(—m),

ECV,

is a 7t (P, %,n) submodule. E corresponds to a smooth sheaf

€ CJR"[.Qy,

the sheaf of vanishing cycles.

From the Picard-Lefschetz formula and the exact sequences

0— (Rnf*Qﬁ)g — (Rnf*(@é)ﬁ — Qé(m - n) — 0
xr = (x,0s)

for all s € X it follows that
(R"£.Qu)s = V=67

for these s, and thus
(13.1.9) R"f.Q¢ = j.j"R" £, Qq

81



Let &% be the smooth sheaf in j*R™ f,Qy, which corresponds to the orthogonal complement
E* of E with respect to (, ). Again, we have two cases.

(i) One (and thus all) §, € E+ (one can show later ‘that this case does not occur). Then
E C &t and thus G = j,.(j*R"f.Q,/EL) is constant on P: the inertia group I, always operates
trivially on V/FE and hence also on V/E*. One has an exact sequence

(13.1.10) 0— j.&+ = 1" R"f.Qr — G — il Qe(m —n)s =0,

where j,E1 is constant on P, since, for s € ¥, one has an exact sequence of stalks
0= E+ =V 5 V/ET = Qim—n) =0,

which shows that I, operates trivially on £+, so that E* is unramified and hence constant
by (13.1.5). If one splits (13.1.10) in two short exact sequences

0 — &t — R'fQ — H

— 0
0 - H — G - @© Qm—-n) — 0
sEX

9

then in the cohomology this gives exact sequences
0— Ey"” = H(P,R"f,Q;) — H*(P,H)
® Q(m—n)— H'(P,H) =0,
seX

and the claim of (c¢) follows, since Q;(m — n) is of -weight —2m + 2n = d + 1.

(ii) This is the most important and most difficult case: There is no d, in E+. Then E € 0+ =
(Rnf*(@g)i, and thus
E+(R"f.Q)s =V,

since % has codimension 1 in V. Then the surjectivity of
Jsd R [ Qo = ji (G R" Qe /E)
follows, since the stalks in s € 3 give surjections
(R"f.Qu)s — V/E.

Furthermore the morphism
GE = G (E/ENED)

is surjective: one has to show that
ENdés =E" = (E/ENE*H)"
is surjective for all s € ¥. But if we have
oxr —x € ENE*,
for x € F and o € I, then the Picard-Lefschetz formula implies

<z, 0,>0, € ENE*
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(since x # 0). If < x,6, ># 0, then §, € EN E+, in contradiction to the assumption. Hence
we have v € E's.

From the consideration above we obtain exact sequences
0—4,E—>R"fQ —F—0,

0= . (ENEL) = 4. = j(E/ENET) =0,

with constant sheaves F = j,(5*R" f.Q/€) and j,(ENEL), and in the cohomology we obtain
exact sequences - -
HY(P,j.£) = H(P,R"f.Q) = E;" — 0,

0— HYP,j.E) = H'(P,j.(E/ENEL)).
It suffices to consider the cohomology of £/(£ N EL). For this the next theorem is essential

Theorem 13.10 For every ¢ : Q, — C, £/(£ N E*) is purely of i-weight n.
If we show this, then the estimate follows as wanted: It follows from 8.5 that
H'(P,j.(E/(ENEY))
has -weights w < n + 2 =d + 1, as quotient of
HYNU,E/(ENED)).

Proof of Theorem 13.10 First we show
Lemma 13.11 E/(E N E*) ®g, Q, is an irreducible smooth Q,-sheaf on U.

Prcﬁ)f_ We calculate with Q,-coefficients and we write again F, E* etc. Let W C E be a
7t (P, 3, 7) submodule, which is not contained in £ N E+. Then there is a w € W and a d,
with (z,d5) # 0. From the Picard-Lefschetz formula

ox —x = xs(o)(z,d5)0s

for a o € Iy with xs(0) # 0 we get ds € W and thus E C W, since all vanishing cycles are
conjugate to each other.

13.12 By Theorem 9.3, every t-real irreducible smooth Q,-sheaf is pure. By 13.11, is suffices
to show that £/(€ N EL) is t-real over a finite extension of F,, because then, in view of the
non-degenerate Poincaré-pairing

(,): E/JENE*xE/(ENEY) — Qi—n),

the (-weight  is necessarily equal to n.

By the Lefschetz formula and proper base change, for a geometric point ¢ over a closed point
t of U we have

~ 2n o .
Z(X,T) = [ldet (1 — FT | H(X; Q)"

1=0

2n i1
= I det (1—FT | (R'f. Qo))"
=0
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This is a product of

i+1

75 =[] det(1 = ET|j*R'h.Qp) ™"

det(1 — F,T | (*R"h,Qy)/&)det(1 — F,TIENEY)

and
7™ =det(1—F, T |E/(ENEY)),

where we set det(1 — F,T | H) := det(1 — F,T | Hz). We saw that all Q,-sheaves which can
be found in Z/ are the restriction of smooth Q-sheaves on P, namely the following:

Ri f* Qf (2#71,714—1),
j* ]* Rn—l—lf* QZ;
J(ENEL).

These are constant on P, hence come by pull-back from representations of Gal(F,/F,). For
such a sheaf K there are (-adic units y1,...,7, € Q, (r = dimK) with

det(1-F, T|K) = JJ(1—~*"7)
j=1

for every t € U (and even every ¢t € P), since every homomorphism Gal(F,/F,) - Q; =
Uy x Z has image in the group U, of f-adic units. From this we see that there are /-adic units
a1, ...,ay and B, ..., By in @Z, such that for all t € U we have

H(l . a{ieg(t)T)

(13.12.1) Z(X,,T) = ﬁ(l—ﬁ?eg(t)T)

J

det (1—-F, T|E/(ENEL)).

Here we can assume that «; # §; for all ¢, 5.

By passing to a finite extension of Fy, we can assume that ;" # 7" for all 4, j and all m € N
(the m € Z with of* = 7" for a j form an ideal (n;), which, by assumption, is not equal
to Z). The left hand side of the equation 13.12.1 is t-real, i.e., lies in R(T) after embedding
of the coefficient (even in Q[T], by the proven Weil conjecture for curves). Thus it suffices

to show that the polynomials R,(T) = [] (1 —a?®7T) and S,(T) = [[ (1 - ﬁ?eg(t)T) are

i ’ i
t-real for all t € U.

Lemma 13.13 If 4, ..., are (-adic units in Q, , then there is a t € | U | such that no
linear factor (1 — 2T (i =1,...,r) divides the polynomial det(1 — F, T | /(€ N EL)).

Proof Otherwise we consider

. = {o € m(U,7) | o has an eigenvalue vfeg(a) on E}.
Here, deg(o) € Z is the image of ¢ under the surjection

deg: m(U,7) — Gal (F,/F,) % Z:

~
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note that for an f-adic unit v € @; the power ~* is defined for every a € Z. Then m is
closed in 71 (U, 7), as union of the inverse images under the maps

i m(U,7) — Aut (E(()X)@e)
—deg(o

o — (e — v oe)

of the closed set {a € Aut(E ® Q) | det(a —id) = 0} .

If 13.13 does not hold, then 7] contains all geometric Frobenius elements over all ¢t €| U |.
Since these generate 7 (U,7) by the Cebotarev density theorem, 7 = 7 (U, 7). Now we

consider inertia groups I, ..., I, over »_ such that the associated vanishing cycles dy, .. ., d.
form a basis of E. If €,...,¢. is the dual basis, then, for ¢ = ¢; + ... + €. and o; € I;, we
have (i =1,...,¢)

[[oie=T]1]0+x0)e.

i=1 i=1

For an appropriate choice of the o; (since x; # 0 for all 7), .7(13'1 o; is not in 7}, contradiction!
1=

Applied to fy, ..., By, it follows from 13.13 that there is a t € Uy such that S;(T) is prime
to det(l1 — F, T | £/(ENEL)). Since Sy(T) is also prime to Ry(T'), for ¢, the right hand side
of 13.12.1 stands in shortened representation, and thus

STy = [ a-prr) e Q[1y,

J

m = deg(t). By base extension to F m, we have S;(T") € Q[T'] for all t € Upy. Then we also have
Ry(T)det(1-F, T | £/(ENEL)) € QT for all t € Up. In particular, ay, . . ., ays are algebraic
numbers, and the application of 13.13 to the finitely many units oo; (i = 1,...,M,0 €
Gal(Q/Q)) gives a t € Uy with R,(T) € Q[T)]. Then, as before, by base extension we have
to K(t): for all t € Uy, Ry(T) € Q[T] and thus also det(1 — F;T | £/(ENE1L)) € Q[T].
In particular, by both base extensions, the sheaf £/(€ N EL) is t-real for every embedding
¢ : Q, = C, which we had to show.
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14 Existence and global properties of Lefschetz pencils

The existence of Lefschetz pencils is shown with typical methods of projective algebraic
geometry (existence of “sufficiently good” hyperplane sections, their “generic” properties,
etc.). Here we consider an irreducible smooth projective variety

XSPY =PY (K afield).

The hyperplanes H in P are parametrized by the points of the dual projective space (PV)V:
to a point (ag : ... :ay) in (PY)Y one associates the hypersurface

H: axg +a121 + ... + ayaxy = 0

in the projective space PV with coordinates x;. More generally, the linear subspaces L C PV
of codimension m (1 < m < N) correspond to the linear subspaces L' C PV of codimension
N + 1 — m: If one writes coordinate-free PV = P(V) for an (N + 1)-dimensional vector
space V, then L/ C (PV)Y = P(VV) consists of all linear forms in the dual space V", which
annihilate V.

In particular, the lines P = P! C (PV)Y correspond to the linear subspaces A of codimension
2 in PN. The “pencil” {H,}scp of the hyperplanes parametrized by P consists of the hyper-
planes, which contain the “axis” A, and A is the intersection of any two different hyperplanes
H, H,.

Definition 14.1 The family {H;}cp is called a Lefschetz pencil for X, if the following
conditions hold:

(a) A intersects X transversally,

(b) there exists an open, dense U C P such that the hyperplanes H;, and X intersect
transversally for all t € U |

(c) fort € S =P — U, H; and X intersect transversally except for one point, which is an
ordinary quadratic singularity of X - H;.

Remark 14.2 The scheme-theoretic intersection X - H; is the projective variety, which is
defined by the equations of X and the linear equation of H;.

First, we rephrase the conditions (b) and (c) in terms of the dual variety X¥ C (PV)V. It
consists of all hyperplanes H in PV, which touch X in a point z: this means that H contains
the projective tangent space of . XV can be obtained as follows: Let J be the defining ideal
of X and let N' = (J/J?)" be its normal bundle. Since X is smooth, N is locally free of rank
N —non X, n=dimX. Let P(NV) be the projective fiber bundle associated to N over X.
Then there is a closed immersion

v:PWN) — POY™) = X x (PV)Y
which is described on the fiber over z € X as

N oF

F i (z,Hp:
i=0



where F is a local section of J/.J?. Globally one can describe v as follows: One has an exact
sequence

0— J/Jzim[{wlx - QL =0

of coherent, locally free sheaves on X. On the other hand one has the well-known exact
sequence
0— Qpy — Opn (=1)N = Opy — 0,

by writing “differential forms in homogeneous coordinates”. By restriction to X and duali-
sing, we obtain a surjection

Ox()™ - (J/P) =N,
which gives the closed immersion
v: P(N) = POx ()N ~ P(OYT!) = PY

with the local description as stated above.

For an x € X, the annihilator of Tx(z) under the canonical duality between the tangent
space Tpn (x) and Qpy (x) is exactly (J/J?)(z). Transferred into homogeneous coordinates,
it means that a hyperplane H contains the projective tangent space of X at x if and only if
the linear form which defines H lies in (J/J?)(x), via the embedding

(J)J*)(x) — (Ox(-=1)N*H(z) = VY

This shows that the image of P(N) under the projection X x (PY)Y — (PY)V coincides with
the dual variety XV. In particular, XV is projective and irreducible, and we have

dim XY <dimPN)=n+(N-n—-1)=N-1.

Lemma 14.3 The morphism ¢ : P(N) — (PY)Y is unramified at the closed point (x, H) if
and only if x is a non-degenerate quadratic singularity of X - H. In particular, the subset U’
of these points is open in P(N).

Proof: later.

It may happen that the mentioned subset is empty. But we consider the Segre-embedding of
degree d
PN s PN )
(o:...iay) = (ooixg®.oaP o)

N+d

where a; € Ng ,> a; = d,also N(d) + 1= ( is the number of all monomial of

degree d in x;. Obviously the hyperplanes in PV correspond with all hyperplanes of degree
d in PV, and we have

Lemma 14.4 For every closed point z € X and every d > 2 there is a hyperplane H of
degree d, which touches X in x and for which z is a ordinary quadratic singularity of X - H.
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Proof By appropriate change of coordinates we can assume that x = (0 : ... : 1) and that
xo/TN, ..., Tn_1/xyN are local coordinates on X at z. Then the hyperplane with the equation

282 Qi (wo, .., 1y) = 0

has the required property.

Let F' C P(N) be the closed complement of U’, and let Fy be the image of F” in (PV)Y. By
possibly passing to an embedding of higher degree d we can assume that Fi(d) # XV for the
corresponding Fi(d).

Lemma 14.5 The set
F'(d) = {(z,y,H) € X xX x (PYDV |z £y, H touches X in x and y}
is Zariski-closed in ((X x X)-diagonal)xPN@ and we have

dim F"(d) < N(d) — d  for d>3.

Proof By the remarks about XV, the closedness is obvious. For the dimension it suffices to
show that the fiber over (a,b) € (X x X)~\ {diagonal} is at most of dimension N(d)—2—2n.
But the fiber consists exactly of all hyperplanes H, which touch X in a and b. Obviously it
suffices to show:

Claim Let L, M C P¥ be linear subspaces and a € L,b € M,a # b. Let W be the vector
space of the homogeneous equations of degree d (= dim W = N(d) + 1). Then the subset

I/T/ of the equations f, whose zero set H; C PV touches L in a and M in b, is a subvector
space of W, and we have

codim W > dim L + dim M + 2

Proof Let ay,...,aqum  Or by,...,bgim a be independent points of L or M, respectively
(i.e., they span no smaller subspaces). The condition on Hy is
(a) a,be Hy,

(b) aiETaHf, bieTbe.

These are linear conditions, in fact dim L + dim M + 2 many. We have to show that these
are linear independent. We only have to show this for L = M = P". Without restriction, by
change of coordinates we have a = (1:0:...:0), b=(0:1:...:0). Then the conditions
for f=5 a, X", v=(v,...,un), X" =X°... X, D vi =d are:

(a) the coefficient of X and X¢ is zero,

(b) f/0X; =0 (j=0,...,N)ataand b, therefore the coefficients of X' X; and X{"'X;
are zero.

These are 2N + 2 linearly independent conditions for d > 3.

Now we consider the proof of Lemma 14.3. First we recall some facts about fitting ideals
and Jacobi ideals.

88



Definition 14.6 Let A be a commutative ring and let M be a finitely presented A-module.
Choose a presentation
G F—M-—70

with locally free modules F, G of finite rank and define the p-th Fitting ideal I*(M) = I4(M)
by
P(M) = Im(A" PG @ A" PFY — A)  (p>0),

if the rank of F is equal to n (F¥Y = Homa(F, A)).
The following properties follow easily from the definition.

Proposition 14.7 (a) The ideals I?(M) are independent of the chosen presentation.

(b) If F' and G are free, then I?(M) is generated by the determinants of all (n—p) x (n— p)-
minors of (a matrix-representation of) a.

(c) If A— B is a ringhomomorphism, then
B®a AT (M) — B/I5(B®a M)

is an isomorphism. In particular, Iy (M) is compatible with localizations on A: for a multi-
plicative subset S of A we have

[§_1A<371M) = STV IR(M) .
(d) We have
I°(M)c I'(M) c I*(M) C ... ,
and for z € Spec (A) the following conditions are equivalent:
() P(M), = Ar (e 2 ¢ Supp (A/P(M))),

(ii) if F, = A?, then G, contains a submodule A?~? which is mapped on a direct factor of
F, (particularly Supp A/I°(M) = Supp (M)).

The conditions holds if p > dim,,) M (z) (where M(z) = x(x) ®4 M).

By 14.7 (c), the definition of Fitting ideals globalizes: for a quasi-coherent, finitely presented
Ox-module O on a scheme X one obtains quasi coherent ideal sheaves I (O) by

LU IX(0) = o, (T 0)
for U C X affine and open. In particular, one defines

Definition 14.8 Let f : X — Y be a scheme-morphism of finite presentation. For p > 0
the closed subscheme JP(X/Y) defined by I% (02} sy) is called the p-th Jacobi scheme of X
over Y.

Proposition 14.9 (a) For every base change Y/ — Y
(XYY — JP(X]Y) xy Y
is an isomorphism (where X' = X xy Y’).
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(b) JO(X/Y) D JYX/Y) D ..., and z ¢ JP(X/Y) for p > dimyy, Qﬁ(/y(:c).

(c) z ¢ JP(X/Y) if and only if there is an open neighborhood U of z and a closed Y-
immersion U — U’ for a smooth Y-scheme U’ with p = dim, U}, (the dimension of the
fiber over f(z) in U’ at x).

Proof It only remains to show (c). If U’ exists as stated, then
dimy, () Qb/y(x) < dimy () Q%],/Y(x) =p

and thus z ¢ JP(X/Y) by (a) and (b). Conversely, let = ¢ J?(X/Y'). Since the question is
local, X = Spec(B) and Y = Spec(A) are affine without restriction. Choose a presentation

of B as an A-algebra
0—-J—>P—B—0

with P = A[zy,...,x,]. Then
J)J? -5 B@p Qb — Qb iy — 0
is exact and B ®p Q}D/A is free of rank r, thus

IFB/A) = Im(A#(J[J%) 05 A P(B®,Qb,)" - B)
— (et (df)) | frveoosfrp € T/T 01y pry € (B @y Qb))

Therefore we have z € JP(X/Y) if and only if there exist fi,..., f,—, in J with det(%(m) +
0, where z; runs through r — p variables among x4, ..., z,. It follows that

U' = Spec (P/(f1,---, fr—p)) — Spec A
is smooth at 2’ = image of x under the closed immersion
U = Spec B — Spec (P/(f1,--- fr—p))

Furthermore the fiber dimension of U’ — Spec A at z is equal to p.

Now we return to hyperplane pencils. Let

Hum'v g IP)N X (]P)N)v
be the incidence relation, i.e., the closed points of H,,;, are the pairs (x, H) with x € H.
H,,iv» is defined scheme theoretically by the equation

N

F:F(in,ai) == Zai Tr; — 0

=0

The diagram
Hum‘vcﬁ PN x (]P)N)v = (IP)N)(I[DN)V

\ lm

(PY)Y
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identifies H,,;, with the universal family of hyperplanes - for ¢t € (PV)V, the fiber of f at ¢
is the hyperplane H,, embedded in PV via pr,. Let Hy be the restriction to X, i.e., defined
by the cartesian diagram of closed immersions

Hx——— X x (PN)¥

.

H iy PN x (PV)Y

Then the fiber over ¢ of
g: Hx — (PM)Y

is equal to H; - X. Now we calculate the (n — 1)-th Jacobian variety of Hx over (PV)Y
(compare SGA 7 XVII Remarque 3.1.5), where n = dim X as before.

Lemma 14.10 J" Y{(Hx/(PN)Y) = P(N) — X x (PM)V.
Proof We have an exact sequence
Z*(pT‘TJ + (F)) — 7" QI%DNX(PN)V/(]P’N)V — Q}_IX/(IPN)\/ —0 s

where i : Hx — PV x (PV)V is the closed immersion, J is the defining ideal of X in PV as
above and the middle sheaf is locally free of rank N. This shows that the defining ideal of
J" Y (Hyx /(PY)V) is locally generated by the (N —n+1) x (N —n+ 1)-minors of the matrix

of; 1,....N—n
ax] ’ ._7 = 07 * N
Qo aq ‘e an
where f1, ..., fy_n are local generators of J. These minors generate exactly the ideal of P(N)

in X x (PM)Y = P (Ox(1)N*1), as follows from the definition of the injection
J/J2 — Ox(—l)NJrl
and the following elementary lemma.

Lemma 14.11 Let A be a ring and let M — AN*! be a free submodule of rank s such
that AN*L/M is locally free. Let by, ..., by be a basis of ANt and let ay, ..., ay be the dual

basis. Then the kernel of the ring-epimorphism
Alag, .. .,ay] = Sym (ANTHY — Sym MY

is generated by the (m + 1) x (m + 1)-minors of the (s + 1) x (N + 1)-matrices

aj(mi)> Z~: B
j=0,...,N
ag ay an ,
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where myq, ..., m, is a basis of M.

Proof Obviously these minors lie in the kernel. To show that the kernel is generated by this,
by localizing on A we can assume that ANT1/M is free as well, and by base change we have

m; = b;_1,1=1,...,s without restriction. Then the considered matrix is
1
1
0
1
ag ap -+ Qg—1 Qg -+ AN
and the minors +as, ..., ay obviously generate the kernel.

Corollary 14.12 The morphism g : Hy — (PY) is smooth at y € Hy if and only if
y ¢ P(N). In particular, g is smooth over (PV)Y — XV,

Proof Since Hx and PV x (PV)Y are both smooth over k, i : Hx < PY x (PV)V is a regular
immersion (SGA 6 VIII 1.2) and thus g : Hx — (PY)Y a locally complete intersection (loc.
cit. 1.1), of the (relative) virtual dimension

(loc. cit. 1.9), where J' is the ideal sheaf of the closed immersion i. But we have:

Proposition 14.13 Let f : Y — X be a local complete intersection of the virtual dimension
m. Then f is smooth at y € Y if and only if y ¢ J"(Y/X).

Proof (see SGAT VI 5.4) By 14.9 (c), we have y € J™(Y/X) if and only if there is a
closed X-immersion ¢ : U < U’ into a smooth X-scheme U’ for an open neighborhood U
of y, with dim, U}(y) = m. If f is smooth at y, we can take U’ = U. Conversely, let
U = Spec B, U = Spec B"and X = Spec A be affine without restriction. The exact
sequence

0—-I1I—-B —-B—=0

induces an exact sequence
[)1P % B@p Qk y — Q54 — 0

Since Y — X is a locally complete intersection and U’ — X is smooth, U < U’ is a regular
immersion (SGA 6 VIII 1.2). By the independence of the virtual dimension of the chosen
presentation we have

m = dlmﬁ(y) B Qp Q}B,/A(y) - dinl,{(y) ]/[z(y)
= m — dimyy,) I/’ (y)

and we get ([/I%), = 0, thus I, = 0;i.e., i at y is locally an isomorphism.

Now we come to the

92



Proof of Lemma 14.3: The morphism
p @ PW) = J7H(Hx/(PY)Y) — (PY)

is unramified at the closed point y = (z, H;) if and only if the fiber J"~'(H, - X/Spec k) —
Spec k is unramified at y. Since H; - X is defined in X by one equation, H; - X —
Spec k is a locally complete intersection of virtual dimension n — 1. Furthermore, since
dimy ) Uy, x(y) < dimgg) Q. (y) = n for every y, the n-th Jacobian J"(H,- X/k) = 0.
Thus the claim follows from the general

Proposition 14.14 Let Y be a locally complete intersection of virtual dimension m over k.
Then the following is equivalent for y € J™(Y/k) ~ J" (Y /k):
(a) Q}]*”(Y/k)/k(?/) =0,

(b) for a neighborhood U of y, J™(Y/k) N U consists only of y and is reduced (and thus
isomorph to Spec k),

(c) y is a closed point and a non-degenerate quadratic singularity of Y.

Proof The equivalence of (a) and (b) is obvious ([Mi]l 3.2). For y € J™(Y/k) ~ J™" (Y /k)
there is an open affine neighborhood U = Spec B and a closed immersion of U into a
smooth affine variety U’ = Spec B’ of the dimension m + 1, therefore an exact sequence

01 B — B —=0

and an étale morphism Alzg, ..., z,,] — B’, which maps the point 2o =21 =... =z, =0
to y. Since Y is a locally complete intersection of virtual dimension m, we can assume that
I is generated by one element f; and necessarily we have f(y) = 0.

From (b) it follows that for sufficiently small U the 2L (j = 0,...,m) generate the maximal

ideal m,, of y in B. Thus the % also generate the maximal ideal m;, of y in B’ (and we have
J
an isomorphism m;, /(m;,)*> — m,/m>). This implies the claim by completion in m;,.

Conversely let y be closed and a non-degenerate quadratic singularity. By definition, 6y\y =

k[[xo, ..., xm]]/(g), where g = Q mod (xg, ..., ,,)%, with a non-degenerate quadratic form
Q(zo,.-.,Zy). Then the ;79]_ (j =0,...,m) generate the maximal ideal m, = m, Oy, of

6;y. Then we have
f&y(ﬂém//@) = my

(where * means m,-adic completion). Here we used that for a noetherian ring R and an ideal
m C R one has

—

Mgy = lim Qp ,  (EGAIVL ),
where R, = R/m, and that the m-adic completion is exact on R-modules of finite type.
For the same reasons . R
I% (M) = I, (M)R

for such a module M or R . .
RIE(T) < RIIM)
respectively. It follows that Iomyy(Qloyy k) = my , therefore (b).
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Now consider the embeddings X < PY N = Ny(d).

Theorem 14.15 For d > 3 there exists a Lefschetz pencil {H;};cp for X < PV, and the
set of the lines P C (PY)V for which {H,};cp is a Lefschetz pencil, is open and dense in the
Grassmann variety Gr(1, (PV)V) of the lines in (PV)V.

Proof for n =dim X even: Let F; = Fi(d) be the closed set in XV, over which
g+ P(N) = J7HH/(PY)Y) » XY < (PY)Y

is ramified and let F, = Fy(d) be the image of the closure of the set (defined in 14.5)
F"(d) € X x X x (PV)V; I}, is closed as well. By definition we have

t¢ F, = H,; touches X in at most one point,
and by 14.3 we have
te XY —F <&  H; X has only non-degenerate quadratic singularities.

Finally by construction we have
t¢ XY < H,intersects X transversally.

Hence for the properties (a) - (¢) of a Lefschetz pencil we have: A hyperplane pencil { H; },cp
satisfies

(a) < the axis A intersects X transversally,

(by & PZ XV,

(c) & PN(FLUF,) # 0.

Now we showed:

dim XV <N -1,

dim Fp, <N —d,ifd>3 (Lemma 14.5),

dim F; < N —2,if d > 2 and 2 even (Lemma 14.4)

(By Lemma 14.4, F} # XV for d > 2, and XV is irreducible). Thus the claim follows from
the well-known

Proposition 14.16 Let Z C PN be a projective variety of dimension m, and let Gr (¢, PV)
be the Grassmann variety of the linear subspaces of dimension ¢ in PV.

(a) The subset of L € Gr(N —m — 1,PV)(k) with L N Z = (0 is open, and non-empty for
7 4PN,

(b) The subset of L € Gr(N —m,PV)(k) with dim Z N L = 0 is open and non-empty.

(¢) (Bertini) If Z is smooth, then for N —m < ¢ < N — 1, the set of L € Gr(¢,PY), which
intersect Z transversally, is open and non-empty.

Now let {H;}icp be a Lefschetz pencil and let
h: HX’p — P

be the restriction of the universal family Hx — (PY) on P (the fiber over ¢ is still
H;- X). By 14.12, h is smooth over the open dense set U = P~ (PN X"), while by (c), the
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fibers H; - X over the finitely many ¢ € ¥ = P — U have exactly one singularity, and this is
ordinary quadratic.

We also have the first projection
T HXJD — X

Lemma 14.17 Via m, Hx p can be identified with the blowing up of X in the smooth,
2-codimensional subvariety AN X (A the axis of the Lefschetz pencil).

Proof First we note that the universal hyperplane H,,;, C PV x (PY)Y is defined inde-
pendently of the choice of coordinates: it corresponds the kernel of the canonical surjection

VeV —k

or the cokernel of the dual map
E— VeVY,

respectively. This shows that for dual bases {z;},{a;} of V and V" the hyperplane H,,;, is
always defined by the equation > a; z; = 0. Now we can choose the coordinates in a way
such that P is described by the equations a; = ... = ay = 0 and thus A is described by
the equation xy = x; = 0. Then Hx p in X x P is described by the equation

ap g + a1 1 = 0;

this is the known description of the blowing up of X in the subvariety A N X described by
the equations zo = z7 = 0 ((ag : a1) are coordinates of P ).

Remark 14.18 If we set X = H x,p, We obtain morphisms
x&Extp=p

with the properties as described in Theorem 12.1.
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