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Einstein’s equation
Einstein’s General Relativity.
What is the equation that describes evolution of spacetime
(without matter)?

Answer: Einstein metrics

Ric = κg,

where κ is constant.



Lagrangian formulation

What is the associated Lagrange functional?

David Hilbert

Let M be the set of all
semi-Riemannian metrics on Mn.
The Einstein equations are
stationary points of the
Einstein-Hilbert-functional

E : M → R,

g 7→
∫

M scal g dvg(∫
M dvg

)(n−2)/n

among compactly supported
perturbations.



The Setting

Now: Let M be n-dimensional, n ≥ 3.
Search for Einstein metrics on M.
These are the stationary points of

E : M1 → R, g 7→
∫

M
scal g dvg

M1 := {metrics on M of volume 1}.
[g] := {u4/(n−2)g | vol(u4/(n−2)g) = 1}.



Definitions

Inside a conformal class:

Y (M, [g]) := inf
g̃∈[g]

E(g̃) > −∞

is the conformal Yamabe invariant. We have

Y (M, [g]) ≤ Y (Sn)

where Sn is the sphere with the standard structure.
On the set of conformal classes:

σ(M) := sup
[g]⊂M1

Y (M, [g]) ∈ (−∞, Y (Sn)]

The smooth Yamabe invariant, also called Schoen’s σ-constant.
Remark σ(M) > 0 if and only if M caries a metric of positive
scalar curvature.



Yamabe’s idea

Find stationary points of E with a minimax principle:
I Find a minimizer in each conformal class, i.e. g̃ ∈ [g]1 with
E(g̃) = Y (M, [g]). Such metrics always exist, have
constant scalar curvature, and are called Yamabe metrics.
They are unique if Y (M, [g0]) < 0.

I Find a maximizing conformal class [gmax], i.e.
Y (M, [gmax]) = σ(M).
2nd step failed: Many manifolds do not carry Einstein
metrics, e.g. S2 × S1.



But:
I σ(M) is linked to many geometric quantities
I Very challenging to calculate σ(M),

many interresting techniques used
I Our result: max{min{σ(M), L(n)}, 0} is a bordism invariant

Key step: a surgery formula



Relations to similar invariants...

... to the spectrum of the conformal Laplacian

inf
g̃∈[g]

λ1

(
4

n − 1
n − 2

∆g̃ + scal g̃
)

=

{
Y (M, [g]) if Y (M, [g]) ≥ 0
−∞ if Y (M, [g]) < 0

... to the Perelman-invariant (Akutagawa, Ishida, LeBrun ’06)

λ̄(M) := sup
g∈M1

λ1(4∆g + scal g)

=

{
σ(M) if σ(M) ≤ 0
+∞ if σ(M) > 0

... to the Ln/2-norm of scal

inf
g̃∈M1

‖scal g̃‖Ln/2(g̃) =

{
|σ(M)| if σ(M) ≤ 0
0 if σ(M) > 0

=⇒ Hence min{σ(M), 0} is determined by an infimum.



Example CP2

The Fubini-Study gFS metric is Einstein and

53, 31... = E(gFS) = Y (CP2, [gFS]) = σ(CP2).

Claude LeBrun ’97, Seiberg-Witten theory

Similar examples

I σ(Sn) = n(n − 1)ω
2/n
n .

I Gromov & Lawson, Schoen & Yau ≈′ 83: Tori Rn/Zn.
σ(Rn/Zn) = 0. Enlargeable manifolds

I LeBrun ′99: All Kähler-Einstein surfaces with non-positive
scalar curvature.

I Bray & Neves ’04: RP3. σ(RP3) = 2−2/3σ(S3).
Penrose inequality, Huisken-Illmanen techniques

I Perelman, M. Anderson ’06: compact quotients of
3-dimensional hyperbolic space, Ricci flow



Other cases when σ(M) is known
I Akutagawa & Neves ’07: Some non-prime 3-manifolds, e.g.

σ(RP3#(S2 × S1)) = σ(RP3).

I Compact quotients of nilpotent Lie groups: σ(M) = 0.

Unknown cases
I Nontrivial quotients of spheres, except RP3.
I Sk × Sm, with k , m ≥ 2.
I No example of dimension ≥ 5 known with σ(M) 6= 0 and

σ(M) 6= σ(Sn).



Surgery
Let Φ : Sk × Bn−k ↪→ M be an embedding.
We define

MΦ
k := M \ Φ(Sk × Bn−k ) ∪ (Bk+1 × Sn−k−1)/ ∼

where / ∼ means gluing the boundaries via

M 3 Φ(x , y) ∼ (x , y) ∈ Sk × Sn−k−1.

We say that MΦ
k is obtained from M by surgery of dimension k .

Example: 0-dimensional
surgery on a surface.



Known surgery formulas

Theorem (Gromov & Lawson ’80, Schoen & Yau ’79)
If 0 ≤ k ≤ n − 3, then

σ(M) > 0 =⇒ σ(MΦ
k ) > 0.

Theorem (Kobayashi ’87)
If k = 0, then

σ(MΦ
0 ) ≥ σ(M).

Theorem (Petean & Yun ’99)
If 0 ≤ k ≤ n − 3, then

σ(MΦ
k ) ≥ min{σ(M), 0}.

The proof uses the characterization of min{σ(M), 0} as an
infimum.



Main results

Theorem (ADH, # 1)
Let 0 ≤ k ≤ n − 3. There is a positive constant L(n, k)
depending only on n and k such that

σ(MΦ
k ) ≥ min{σ(M), L(n, k)}.

Furthermore L(n, 0) = Y (Sn).
This theorem implies all three previously known surgery
formulas.
Thm # 1 follows directly from Thm # 2.

Theorem (ADH, #2)
Let 0 ≤ k ≤ n − 3. Then for any metric g on M there is a
sequence of metrics gi on MΦ

k such that

min {Y (M, [g]), L(n, k)} ≤ lim inf
i→∞

Y (MΦ
k , [gi ]) ≤ Y (M, [g]).



Topological conclusions

From now on n ≥ 5.

L(n) := min{L(n, 1), L(n, 2), . . . , L(n, n − 3)}.

If k ∈ {2, 3, . . . , n − 3}, then

min{σ(M), L(n)} = min{σ(MΦ
k ), L(n)}.

There is no sequence of simply connected manifolds (Mi |i ∈ N)
of fixed dimension n such that

L(n) > σ(M1) > σ(M2) > σ(M3) > ... ≥ 0.



We obtain bordism invariants, e.g.

sΓ : Ωspin
n (BΓ) → R.

The group {x ∈ Ωspin
n (BΓ) | sΓ(x) > ε} is a subgroup.



Another Application

Let n ≥ 5. Take Mn with σ(M) ∈ (0, L(n)).
Let p, q ∈ N be relatively prime. Then

σ(M# · · ·#M︸ ︷︷ ︸
p times

) = σ(M)

or
σ(M# · · ·#M︸ ︷︷ ︸

q times

) = σ(M).

Are there such manifolds M?
Schoen conjectured: σ(Sn/Γ) = σ(Sn)/(#Γ)2/n ∈ (0, L(n))
for #Γ large.



Proof of Theorem # 2

Theorem (ADH, #2)
Let 0 ≤ k ≤ n − 3. Then for any metric g on M there is a
sequence of metrics gi on MΦ

k such that

min {Y (M, [g]), L(n, k)} ≤ lim inf
i→∞

Y (MΦ
k , [gi ]) ≤ Y (M, [g]).

Easy part:
lim inf
i→∞

Y (MΦ
k , [gi ]) ≤ Y (M, [g])

Difficult and important part

min {Y (M, [g]), L(n, k)} ≤ lim inf
i→∞

Y (MΦ
k , [gi ])

For this, we construct a sequence [gi ] explicitly and study the
behavior of the minimizers in [gi ] for i →∞.



Construction of the metrics

Let Φ : Sk × Bn−k ↪→ M be an embedding.
We write close to S := Φ(Sk × {0}), r(x) := d(x , S)

g ≈ g|S + dr2 + r2gn−k−1
round

where gn−k−1
round is the round metric on Sn−k−1.

t := − log r .
1
r2 g ≈ e2tg|S + dt2 + gn−k−1

round

We define a metric

gi =


g for r > r1
1
r2 g for r ∈ (2ρ, r0)

f 2(t)g|S + dt2 + gn−k−1
round for r < 2ρ

that extends to a metric on MΦ
k .



gi = g gi = F 2g

Sn−k−1 has constant length



Proof of Theorem #2, continued
Any class [gi ] contains a minimizing metric written as u4/(n−2)

i gi .
We obtain a PDE:

4
n − 1
n − 2

∆gi ui + scal gi ui = λiu
n+2
n−2
i

ui > 0,

∫
u2n/(n−2)

i dvgi = 1, λi = Y ([gi ])

This sequence might:
I Concentrate in at least one point. Then lim inf λi ≥ Y (Sn).
I Concentrate on the old part M \ S. Then lim inf λi ≥ Y ([g]).
I Concentrate on the new part.

Then study pointed Gromov-Hausdorff limits.
Limit spaces:

Mc := Hk+1
c × Sn−k−1

Hk+1
c : simply connected, complete, K = −c2



The numbers L(n, k)

L(n, k) := inf
c∈[0,1]

Y (Hk+1
c × Sn−k−1)

Note: Hk+1
1 × Sn−k−1 ∼= Sn \ Sk .

k = 0: L(n, 0) = Y (R× Sn−1) = Y (Sn)
k = 1, . . . , n − 3: L(n, k) > 0

Conjecture #1: L(n, k) = Y (Rk+1 × Sn−k−1)

Conjecture #2: For determining Y (Hk+1
c × Sn−k−1) it suffices to

consider O(n − k) invariant functions.



Suppose Conjecture #2 is true.
Then one can even restrict to O(k + 1)×O(n − k)-invariant
functions.
The determination of L(n, k) then reduces to solving ODEs.

n = 4, k = 1. H2
c × S2.

Conj. #2 implies Conj. # 1.
It follows L(4, 1) = 59, 4....
Compare to σ(S4) = Y (S4) = 61, 5....

One obtains S2 × S2 via 1-dimensional surgery from S4.
Hence

σ(S2 × S2) ≥ 59, 4 > 50, 2... = Y (S2 × S2).



Related result for the Dirac operator
Theorem (ADH, #2)
0 ≤ k ≤ n − 2. Suppose that MΦ

k is obtained from M by
k-dimensional surgery, which is compatible with orientation and
spin structure. Then for any metric g on M there is a sequence
of metrics ḡ on MΦ

k such that

dim ker DMΦ
k ,ḡ ≤ dim ker DM,g

The Atiyah-Singer index theorem implies for any closed spin
manifold M

dim ker DM,ḡ ≥ |α(M)| (∗)
with α(M) = Â(M) if 4|n.

Corollary
Equality in (*) holds for generic metrics, if M is connected.
If n 6≡ 1, 2 mod 8, g generic, then

I D|Σ+ injective and D|Σ− surjective, or
I D|Σ− injective and D|Σ+ surjective



End of the talk.
Thank you!



Some Details about topological conclusions

L(n) := min{L(n, 1), L(n, 2), . . . , L(n, n − 3)},

σ̄(M) := min{σ(M), L(n)}.

Let MΦ
k be obtained from M by surgery of dimension

k ∈ {2, 3, . . . , n − 3}, then σ̄(M) = σ̄(MΦ
k ).

Goal: Find a bordism invariant!



Let Γ be a finitely presented group.
Let Ωspin

n (BΓ) the spin cobordism group over BΓ.
Any class in Ωspin

n (BΓ) has a π1-bijective representative, i.e. it is
represented by (M, f ), where M is a connected compact spin
manifold, and where f : M → BΓ induces an isomorphism
π1(M) → π1(BΓ) = Γ.

Lemma
n ≥ 5. Let (M1, f1) and (M2, f2) be spin cobordant over BΓ and
let (M2, f2) be π1-bijective. Then

σ̄(M2) ≥ σ̄(M1).

We define
sΓ([M, f ]) := max σ̄(N)

where the maximum runs over all (N, h) with

[M, f ] = [N, h] ∈ Ωspin
n (BΓ).



σ̄ := min{σ(M), L(n)}
sΓ([M, f ]) := σ̄(M) if (M, f ) is π1-bijective
sΓ : Ωspin

n (BΓ) → (−∞, L(n)]

Corollary
Let n ≥ 5 and ε ∈ (0, L(n)). The groups
{x ∈ Ωspin

n (BΓ) | sΓ(x) > ε} and {x ∈ Ωspin
n (BΓ) | sΓ(x) ≥ ε} are

subgroups.



Applications

Let n ≥ 5. Take Mn with σ(M) ∈ (0, L(n)).
Let p, q ∈ N be relatively prime. Then

σ(M# · · ·#M︸ ︷︷ ︸
p times

) = σ(M)

or
σ(M# · · ·#M︸ ︷︷ ︸

q times

) = σ(M).

Are there such manifolds M?
Schoen conjectured: σ(Sn/Γ) = σ(Sn)/(#Γ)2/n ∈ (0, L(n))
for #Γ large.



Dimension n = 3
I Einstein 3-manifolds with κ = 0 are flat.
I Einstein 3-manifolds with κ > 0 are quotients of spheres.
I Einstein 3-manifolds with κ < 0 are quotients of hyperbolic

spaces.

More about: Examples where Yamabe’s idea
fails
There is no Einstein metric on
non-prime 3-manifolds and
S2 × S1.

Schoen: σ(Sn−1 × S1) = σ(Sn). The supremum is not attained.

Other problem In the case σ(M) < 0 the minimizers are unique.
Hence, if a maximizing conformal class exists, then the unique
minimizing metric in that class is Einstein.
However, in the case σ(M) > 0, a minimizing metric in a
maximizing class may be non-Einstein!
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