A surgery formula for the smooth Yamabe invariant

B. Ammann¹ M. Dahl² E. Humbert³

¹Universität Regensburg Germany

²Kungliga Tekniska Högskolan, Stockholm Sweden

³Université Henri Poincaré, Nancy France

3- City-Seminar, Tübingen 2009

Einstein-Hilbert functional

History

Surgery

Main results

Topological conclusions

Another Application

Comments on the proofs

The numbers L(n, k)

Related result for the Dirac operator

Einstein's equation

Einstein's General Relativity. What is the equation that describes evolution of spacetime (without matter)?

Answer: Einstein metrics

$$\operatorname{Ric} = \kappa g$$
,

where κ is constant.

Lagrangian formulation

What is the associated Lagrange functional?

David Hilbert

Let \mathcal{M} be the set of all semi-Riemannian metrics on M^n . The Einstein equations are stationary points of the Einstein-Hilbert-functional

among compactly supported perturbations.

The Setting

Now: Let *M* be *n*-dimensional, $n \ge 3$. Search for Einstein metrics on *M*. These are the stationary points of

$$\mathcal{E}: \mathcal{M}_1 \to \mathbb{R}, \qquad \boldsymbol{g} \mapsto \int_{\boldsymbol{M}} \operatorname{scal}^{\boldsymbol{g}} \boldsymbol{dv}^{\boldsymbol{g}}$$

 $\mathcal{M}_1 := \{ \text{metrics on } M \text{ of volume 1} \}. \\ [g] := \{ u^{4/(n-2)}g \, | \, \mathrm{vol}(u^{4/(n-2)}g) = 1 \}.$

Definitions

Inside a conformal class:

$$Y(M,[g]):= \inf_{ ilde{g}\in [g]} \mathcal{E}(ilde{g}) > -\infty$$

is the conformal Yamabe invariant. We have

 $Y(M,[g]) \leq Y(\mathbb{S}^n)$

where S^n is the sphere with the standard structure. On the set of conformal classes:

$$\sigma(\boldsymbol{M}) := \sup_{[\boldsymbol{g}] \subset \mathcal{M}_1} \boldsymbol{Y}(\boldsymbol{M}, [\boldsymbol{g}]) \in (-\infty, \boldsymbol{Y}(\mathbb{S}^n)]$$

The smooth Yamabe invariant, also called Schoen's σ -constant. Remark $\sigma(M) > 0$ if and only if *M* caries a metric of positive scalar curvature.

Yamabe's idea

Find stationary points of \mathcal{E} with a minimax principle:

Find a minimizer in each conformal class, i.e. g̃ ∈ [g]₁ with E(g̃) = Y(M, [g]). Such metrics always exist, have constant scalar curvature, and are called Yamabe metrics. They are unique if Y(M, [g₀]) < 0.</p>

Find a maximizing conformal class [g_{max}], i.e.
 Y(M, [g_{max}]) = σ(M).
 2nd step failed: Many manifolds do not carry Einstein metrics, e.g. S² × S¹.

But:

- $\sigma(M)$ is linked to many geometric quantities
- Very challenging to calculate σ(M), many interresting techniques used
- ► Our result: max{min{σ(M), L(n)}, 0} is a bordism invariant Key step: a surgery formula

Relations to similar invariants...

... to the spectrum of the conformal Laplacian

$$\inf_{\tilde{g}\in[g]}\lambda_1\left(4\frac{n-1}{n-2}\Delta^{\tilde{g}}+\operatorname{scal}\,^{\tilde{g}}\right)=\begin{cases}Y(M,[g]) & \text{if }Y(M,[g])\geq 0\\ -\infty & \text{if }Y(M,[g])<0\end{cases}$$

... to the Perelman-invariant (Akutagawa, Ishida, LeBrun '06)

$$\begin{split} \bar{\lambda}(M) &:= \sup_{g \in \mathcal{M}_1} \lambda_1 (4\Delta^g + \operatorname{scal}^g) \\ &= \begin{cases} \sigma(M) & \text{if } \sigma(M) \leq 0 \\ +\infty & \text{if } \sigma(M) > 0 \end{cases} \end{split}$$

... to the $L^{n/2}$ -norm of scal

$$\inf_{\tilde{g}\in\mathcal{M}_1} \|\operatorname{scal}\,^{\tilde{g}}\|_{L^{n/2}(\tilde{g})} = \begin{cases} |\sigma(M)| & \text{if } \sigma(M) \leq 0\\ 0 & \text{if } \sigma(M) > 0 \end{cases}$$

 \implies Hence min{ $\sigma(M), 0$ } is determined by an infimum.

Example $\mathbb{C}P^2$

The Fubini-Study g_{FS} metric is Einstein and

$$53,31... = \mathcal{E}(g_{\text{FS}}) = Y(\mathbb{C}P^2, [g_{\text{FS}}]) = \sigma(\mathbb{C}P^2).$$

Claude LeBrun '97, Seiberg-Witten theory

Similar examples

$$\triangleright \ \sigma(S^n) = n(n-1)\omega_n^{2/n}.$$

- ► Gromov & Lawson, Schoen & Yau $\approx' 83$: Tori $\mathbb{R}^n/\mathbb{Z}^n$. $\sigma(\mathbb{R}^n/\mathbb{Z}^n) = 0$. *Enlargeable manifolds*
- LeBrun '99: All Kähler-Einstein surfaces with non-positive scalar curvature.
- Bray & Neves '04: ℝP³. σ(ℝP³) = 2^{-2/3}σ(S³). Penrose inequality, Huisken-Illmanen techniques
- Perelman, M. Anderson '06: compact quotients of 3-dimensional hyperbolic space, *Ricci flow*

Other cases when $\sigma(M)$ is known

Akutagawa & Neves '07: Some non-prime 3-manifolds, e.g.

$$\sigma(\mathbb{R}P^3 \# (S^2 \times S^1)) = \sigma(\mathbb{R}P^3).$$

• Compact quotients of nilpotent Lie groups: $\sigma(M) = 0$.

Unknown cases

- ▶ Nontrivial quotients of spheres, except $\mathbb{R}P^3$.
- ▶ $S^k \times S^m$, with $k, m \ge 2$.
- ▶ No example of dimension \geq 5 known with $\sigma(M) \neq$ 0 and $\sigma(M) \neq \sigma(S^n)$.

Surgery

Let $\Phi: S^k \times \overline{B^{n-k}} \hookrightarrow M$ be an embedding. We define

$$M^{\Phi}_k := M \setminus \Phi(S^k \times B^{n-k}) \cup (B^{k+1} \times S^{n-k-1}) / \sim$$

where $/\sim$ means gluing the boundaries via

$$M
i \Phi(x,y) \sim (x,y) \in S^k \times S^{n-k-1}$$

We say that M_k^{Φ} is obtained from *M* by surgery of dimension *k*.

Example: 0-dimensional surgery on a surface.

Known surgery formulas

Theorem (Gromov & Lawson '80, Schoen & Yau '79) If $0 \le k \le n-3$, then

$$\sigma(M) > 0 \implies \sigma(M_k^{\Phi}) > 0.$$

Theorem (Kobayashi '87)
If
$$k = 0$$
, then
 $\sigma(M_0^{\Phi}) \ge \sigma(M)$.

Theorem (Petean & Yun '99) If $0 \le k \le n - 3$, then

 $\sigma(\mathbf{M}_{k}^{\Phi}) \geq \min\{\sigma(\mathbf{M}), \mathbf{0}\}.$

The proof uses the characterization of $\min\{\sigma(M), 0\}$ as an infimum.

Main results

Theorem (ADH, # 1)

Let $0 \le k \le n-3$. There is a positive constant L(n,k) depending only on n and k such that

$$\sigma(M_k^{\Phi}) \geq \min\{\sigma(M), L(n,k)\}.$$

Furthermore $L(n, 0) = Y(\mathbb{S}^n)$.

This theorem implies all three previously known surgery formulas.

Thm # 1 follows directly from Thm # 2.

Theorem (ADH, #2)

Let $0 \le k \le n-3$. Then for any metric g on M there is a sequence of metrics g_i on M_k^{Φ} such that

 $\min \{Y(M, [g]), L(n, k)\} \leq \liminf_{i \to \infty} Y(M_k^{\Phi}, [g_i]) \leq Y(M, [g]).$

Topological conclusions

From now on $n \ge 5$.

$$L(n) := \min\{L(n, 1), L(n, 2), \dots, L(n, n-3)\}.$$

If $k \in \{2, 3, \dots, n-3\}$, then

$$\min\{\sigma(\boldsymbol{M}), \boldsymbol{L}(\boldsymbol{n})\} = \min\{\sigma(\boldsymbol{M}_{k}^{\Phi}), \boldsymbol{L}(\boldsymbol{n})\}.$$

There is no sequence of simply connected manifolds $(M_i | i \in \mathbb{N})$ of fixed dimension *n* such that

$$L(n) > \sigma(M_1) > \sigma(M_2) > \sigma(M_3) > \ldots \ge 0.$$

We obtain bordism invariants, e.g.

$$s_{\Gamma}:\Omega_{n}^{spin}(B\Gamma)
ightarrow\mathbb{R}.$$

The group $\{x \in \Omega_n^{\text{spin}}(B\Gamma) \mid s_{\Gamma}(x) > \epsilon\}$ is a subgroup.

Another Application

Let $n \ge 5$. Take M^n with $\sigma(M) \in (0, L(n))$. Let $p, q \in \mathbb{N}$ be relatively prime. Then

$$\sigma(\underbrace{M \# \cdots \# M}_{p \text{ times}}) = \sigma(M)$$

or

$$\sigma(\underbrace{M\#\cdots\#M}_{q \text{ times}}) = \sigma(M).$$

Are there such manifolds *M*? Schoen conjectured: $\sigma(S^n/\Gamma) = \sigma(S^n)/(\#\Gamma)^{2/n} \in (0, L(n))$ for $\#\Gamma$ large.

Proof of Theorem # 2

Theorem (ADH, #2)

Let $0 \le k \le n-3$. Then for any metric g on M there is a sequence of metrics g_i on M_k^{Φ} such that

 $\min \{Y(M, [g]), L(n, k)\} \leq \liminf_{i \to \infty} Y(M_k^{\Phi}, [g_i]) \leq Y(M, [g]).$

Easy part:

$$\liminf_{i\to\infty} Y(M_k^{\Phi},[g_i]) \leq Y(M,[g])$$

Difficult and important part

$$\min \{Y(M, [g]), L(n, k)\} \leq \liminf_{i \to \infty} Y(M_k^{\Phi}, [g_i])$$

For this, we construct a sequence $[g_i]$ explicitly and study the behavior of the minimizers in $[g_i]$ for $i \to \infty$.

Construction of the metrics

Let $\Phi : S^k \times \overline{B^{n-k}} \hookrightarrow M$ be an embedding. We write close to $S := \Phi(S^k \times \{0\}), r(x) := d(x, S)$

$$g pprox g|_{S} + dr^2 + r^2 g_{round}^{n-k-1}$$

where g_{round}^{n-k-1} is the round metric on S^{n-k-1} . $t := -\log r$. $\frac{1}{r^2}g \approx e^{2t}g|_S + dt^2 + g_{round}^{n-k-1}$

We define a metric

$$g_i = \begin{cases} g & \text{for } r > r_1 \\ \frac{1}{r^2}g & \text{for } r \in (2\rho, r_0) \\ f^2(t)g|_S + dt^2 + g_{round}^{n-k-1} & \text{for } r < 2\rho \end{cases}$$

that extends to a metric on M_k^{Φ} .

Proof of Theorem #2, continued

Any class $[g_i]$ contains a minimizing metric written as $u_i^{4/(n-2)}g_i$. We obtain a PDE:

$$4\frac{n-1}{n-2}\Delta^{g_i}u_i + \operatorname{scal}^{g_i}u_i = \lambda_i u_i^{\frac{n+2}{n-2}}$$
$$u_i > 0, \qquad \int u_i^{2n/(n-2)} dv^{g_i} = 1, \qquad \lambda_i = Y([g_i])$$

This sequence might:

- Concentrate in at least one point. Then $\liminf \lambda_i \ge Y(\mathbb{S}^n)$.
- Concentrate on the old part $M \setminus S$. Then $\liminf \lambda_i \ge Y([g])$.
- Concentrate on the new part. Then study pointed Gromov-Hausdorff limits. Limit spaces:

$$\mathbb{M}_c := \mathbb{H}_c^{k+1} \times \mathbb{S}^{n-k-1}$$

 \mathbb{H}_{c}^{k+1} : simply connected, complete, $K = -c^{2}$

The numbers L(n, k)

$$L(n,k) := \inf_{c \in [0,1]} Y(\mathbb{H}_c^{k+1} \times \mathbb{S}^{n-k-1}$$

Note: $\mathbb{H}_1^{k+1} \times \mathbb{S}^{n-k-1} \cong \mathbb{S}^n \setminus \mathbb{S}^k$.
 $k = 0$: $L(n,0) = Y(\mathbb{R} \times \mathbb{S}^{n-1}) = Y(\mathbb{S}^n)$
 $k = 1, \dots, n-3$: $L(n,k) > 0$

Conjecture #1: $L(n,k) = Y(\mathbb{R}^{k+1} \times \mathbb{S}^{n-k-1})$

Conjecture #2: For determining $Y(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1})$ it suffices to consider O(n-k) invariant functions.

)

Suppose Conjecture #2 is true.

Then one can even restrict to $O(k + 1) \times O(n - k)$ -invariant functions.

The determination of L(n, k) then reduces to solving ODEs.

 $n = 4, k = 1. \mathbb{H}_c^2 \times \mathbb{S}^2.$ Conj. #2 implies Conj. # 1. It follows L(4, 1) = 59, 4....Compare to $\sigma(S^4) = Y(\mathbb{S}^4) = 61, 5....$

One obtains $S^2 \times S^2$ via 1-dimensional surgery from S^4 . Hence

$$\sigma(S^2 \times S^2) \geq 59, 4 > 50, 2... = Y(\mathbb{S}^2 \times \mathbb{S}^2).$$

Related result for the Dirac operator

Theorem (ADH, #2)

 $0 \le k \le n - 2$. Suppose that M_k^{Φ} is obtained from M by *k*-dimensional surgery, which is compatible with orientation and spin structure. Then for any metric g on M there is a sequence of metrics \bar{g} on M_k^{Φ} such that

dim ker
$$\mathit{D}^{\mathit{M}^{\Phi}_k, ar{g}} \leq \mathsf{dim}\,\mathsf{ker}\, \mathit{D}^{\mathit{M}, g}$$

The Atiyah-Singer index theorem implies for any closed spin manifold ${\it M}$

$$\dim \ker D^{M,\bar{g}} \ge |\alpha(M)| \qquad (*)$$

with $\alpha(M) = \hat{A}(M)$ if 4|n.

Corollary

Equality in (*) holds for generic metrics, if M is connected.

- If $n \neq 1,2 \mod 8$, g generic, then
 - ▶ D|_{Σ+} injective and D|_{Σ−} surjective, or
 - $D|_{\Sigma^-}$ injective and $D|_{\Sigma^+}$ surjective

End of the talk. Thank you!

Some Details about topological conclusions

$$L(n) := \min\{L(n,1), L(n,2), \dots, L(n,n-3)\},\$$

$$\bar{\sigma}(M) := \min\{\sigma(M), L(n)\}.$$

Let M_k^{Φ} be obtained from M by surgery of dimension $k \in \{2, 3, ..., n-3\}$, then $\overline{\sigma}(M) = \overline{\sigma}(M_k^{\Phi})$.

Goal: Find a bordism invariant!

Let Γ be a finitely presented group.

Let $\Omega_n^{\text{spin}}(B\Gamma)$ the spin cobordism group over $B\Gamma$.

Any class in $\Omega_n^{\text{spin}}(B\Gamma)$ has a π_1 -bijective representative, i.e. it is represented by (M, f), where M is a connected compact spin manifold, and where $f : M \to B\Gamma$ induces an isomorphism $\pi_1(M) \to \pi_1(B\Gamma) = \Gamma$.

Lemma

 $n \ge 5$. Let (M_1, f_1) and (M_2, f_2) be spin cobordant over B Γ and let (M_2, f_2) be π_1 -bijective. Then

 $\bar{\sigma}(M_2) \geq \bar{\sigma}(M_1).$

We define

$$s_{\Gamma}([M,f]) := \max \bar{\sigma}(N)$$

where the maximum runs over all (N, h) with

$$[M, f] = [N, h] \in \Omega^{\operatorname{spin}}_n(B\Gamma).$$

$$ar{\sigma} := \min\{\sigma(M), L(n)\}$$

 $s_{\Gamma}([M, f]) := ar{\sigma}(M) ext{ if } (M, f) ext{ is } \pi_1 ext{-bijective}$
 $s_{\Gamma} : \Omega_n^{ ext{spin}}(B\Gamma) \to (-\infty, L(n)]$

Corollary Let $n \ge 5$ and $\epsilon \in (0, L(n))$. The groups $\{x \in \Omega_n^{\text{spin}}(B\Gamma) \mid s_{\Gamma}(x) > \epsilon\}$ and $\{x \in \Omega_n^{\text{spin}}(B\Gamma) \mid s_{\Gamma}(x) \ge \epsilon\}$ are subgroups.

Applications

Let $n \ge 5$. Take M^n with $\sigma(M) \in (0, L(n))$. Let $p, q \in \mathbb{N}$ be relatively prime. Then

$$\sigma(\underbrace{M \# \cdots \# M}_{p \text{ times}}) = \sigma(M)$$

or

$$\sigma(\underbrace{M\#\cdots\#M}_{q \text{ times}}) = \sigma(M).$$

Are there such manifolds *M*? Schoen conjectured: $\sigma(S^n/\Gamma) = \sigma(S^n)/(\#\Gamma)^{2/n} \in (0, L(n))$ for $\#\Gamma$ large.

Dimension n = 3

- Einstein 3-manifolds with $\kappa = 0$ are flat.
- Einstein 3-manifolds with $\kappa > 0$ are quotients of spheres.
- Einstein 3-manifolds with κ < 0 are quotients of hyperbolic spaces.

More about: Examples where Yamabe's idea fails

There is no Einstein metric on non-prime 3-manifolds and $S^2 \times S^1$.

Schoen: $\sigma(S^{n-1} \times S^1) = \sigma(S^n)$. The supremum is not attained.

Other problem In the case $\sigma(M) < 0$ the minimizers are unique. Hence, if a maximizing conformal class exists, then **the unique** minimizing metric in that class is Einstein. However, in the case $\sigma(M) > 0$, **a** minimizing metric in a

