The K-groups of a non-unital commutative ring C are defined by
\[K_i(C) = \pi_i \text{hofib}[K(C \times \mathbb{Z}) \to K(\mathbb{Z})] \quad (i \in \mathbb{Z}) \]
where on the right K stands for the non-connective K-theory spectrum of a ring.

Let A be a commutative ring and let $I \subset A$ be an ideal. In the early days of algebraic K-theory Bass constructed an exact sequence
\begin{equation}
K_1(A) \to K_1(A/I) \to K_0(I) \to K_0(A) \to K_0(A/I) \to K_{-1}(I) \to \cdots .
\end{equation}
Soon it was realized that in general one cannot expect this sequence to be continued on the left. This problem, known as excision in algebraic K-theory, was solved in [4] in characteristic zero and in [3] in general. In [1, Thm. 3.1] and in [2] a pro-version of excision is deduced.

Theorem (Suslin–Wodzicki, Suslin)
If $\text{Tor}_i^A(\mathbb{Z}, \mathbb{Z}) = 0$ for all $i > 0$ then (1) can be continued to the left, i.e. the natural map
\[K_j(I) \xrightarrow{\sim} K_j(A, I) \]
is an isomorphism between K-theory of I and relative K-theory of the pair (A, I) for all $j \in \mathbb{Z}$.

Corollary (Geisser–Hesselholt, Morrow)
If A is noetherian the map
\[(K_j(I^n))_n \xrightarrow{\sim} (K_j(A, I^n))_n \]
is an isomorphism of pro-groups in n.

References

E-mail address: moritz.kerz@mathematik.uni-regensburg.de