2.E Exercises

Exercise 2.E.1 (products).

- 1. Let Γ and Λ be infinite groups of finite type. Show that $b_1^{(2)}(\Gamma \times \Lambda) = 0$.
- 2. Conclude: If Γ is a group of finite type with $b_1^{(2)}(\Gamma) \neq 0$, then Γ does *not* contain a finite index subgroup that is a product of two infinite groups.

Exercise 2.E.2 (Euler characteristic). Let Γ be a group that admits a finite classifying space. Show that

$$\chi(\Gamma) = \sum_{n \in \mathbb{N}} (-1)^n \cdot b_n^{(2)}(\Gamma)$$

Exercise 2.E.3 (QI?! [51, 63]). Let Γ be a group of finite type and let $r \in \mathbb{N}_{\geq 2}$.

- 1. Compute all L^2 -Betti numbers of $F_r * \Gamma$ in terms of r and the L^2 -Betti numbers of Γ .
- 2. Let $k\in\mathbb{N}_{\geq2}.$ Conclude that the quotient $b_1^{(2)}/b_k^{(2)}$ is not a quasi-isometry invariant.
- 3. Show that the sign of the Euler characteristic is not a quasi-isometry invariant.
- 4. Use these results to prove that there exist groups of finite type that are quasi-isometric but not commensurable.

Hints. If $s \in \mathbb{N}_{\geq 2}$, then it is known that F_r and F_s are bilipschitz equivalent and thus that $F_r * \Gamma$ and $F_s * \Gamma$ are quasi-isometric [51, 63].

Exercise 2.E.4 (deficiency [44]).

1. Let Γ be a group of finite type and let $\langle S \,|\, R \rangle$ be a finite presentation of Γ . Show that

$$|S| - |R| \le 1 - b_0^{(2)}(\Gamma) + b_1^{(2)}(\Gamma) - b_2^{(2)}(\Gamma)$$

Taking the maximum of all these differences thus shows that the *deficiency* $def(\Gamma)$ of Γ is bounded from above by the right hand side.

2. Let $\Gamma \subset \text{Isom}^+(\mathbb{H}^4)$ be a torsion-free uniform lattice. Show that

$$def(\Gamma) \le 1 - \chi(\Gamma) = 1 - \frac{3}{4 \cdot \pi^2} \cdot vol(\Gamma \setminus \mathbb{H}^4)$$