Exercise 1 (separation theorems?). Prove or disprove:

1. If \(f : S^1 \to \mathbb{R}^{2016} \) is continuous and injective, then \(\mathbb{R}^{2016} \setminus f(S^1) \) is path-connected.

2. If \(f : S^1 \to S^1 \times S^1 \) is continuous and injective, then \(S^1 \times S^1 \setminus f(S^1) \) has exactly two path-connected components.

Exercise 2 (connectivity).

1. Let \(n \in \mathbb{N} \). Show that an open subset of \(\mathbb{R}^n \) is connected if and only if it is path-connected.

2. Let \(X \) be a topological space that has only finitely many connected components. Show that the connected components of \(X \) are all open.

Exercise 3 (vanishing \(\ell^1 \)-semi-norm). In the following, we consider the \(\ell^1 \)-semi-norm \(\| \cdot \|_1 \) on \(H_\ast(C; \mathbb{R}) \) as defined in Exercise 3 of Sheet 11.

1. Let \(n \in \mathbb{N} \) and let \(k \in \mathbb{N}_{>0} \). Show that \(\| \cdot \|_1 \) is the zero semi-norm on \(H_k(S^n; \mathbb{R}) \).

2. Let \(k \in \mathbb{N}_{>0} \). Show that \(\| \cdot \|_1 \) is the zero semi-norm on \(H_k(S^1 \times S^1; \mathbb{R}) \).

Exercise 4 (homotopy groups of spheres). Let \(n \in \mathbb{N}_{>0} \). Calculate \(\pi_k(S^n, e^n_1) \) and \(\pi_k((S^n, e^n_1) \vee (S^n, e^n_1)) \) for all \(k \in \{2, \ldots, n\} \) via the Hurewicz theorem.

Bonus Problem (Hurewicz theorem). Fill in the details of the proof of the Hurewicz theorem. Illustrate your arguments with appropriate pictures!