Classification up to KK-equivalence for circle actions on C*-algebras and some other cases

Rasmus Bentmann
University of Göttingen

joint work with Ralf Meyer

SFB Miniworkshop on C*-Algebras, C*-Bundles, and Group Actions

University of Münster
November 2013
Overview

We construct classification functors up to KK-equivalence for

- \mathbb{T}-C*-algebras,
- C*-algebras over a unique path space,
Overview

We construct classification functors up to KK-equivalence for

- \mathbb{T}-C^*-algebras,
- C^*-algebras over a unique path space,
- graph C^*-algebras over a finite space.
We construct classification functors up to KK-equivalence for

- \mathbb{T}-\mathcal{C}^*-algebras,
- \mathcal{C}^*-algebras over a unique path space,
- graph \mathcal{C}^*-algebras over a finite space

by adopting a method from algebraic topology due to Bousfield.
We construct classification functors up to KK-equivalence for
- \mathbb{T}-C^*-algebras,
- C^*-algebras over a unique path space,
- graph C^*-algebras over a finite space
by adopting a method from algebraic topology due to Bousfield.
Motivational case: \(KK^\mathbb{T} \)

- Objects: separable \(\mathbb{T}\)-\(C^* \)-algebras
- Morphisms: \(KK^\mathbb{T} \)-classes
- Composition: Kasparov product

Consider the functor \(A \mapsto K^\mathbb{T}_*(A) \cong K_*(A \rtimes \mathbb{T}) \cong KK^\mathbb{T}_*(\mathbb{C}, A) \).

Definition/Theorem (Meyer–Nest)

\(A \in B^\mathbb{T} \iff A \rtimes \mathbb{T} \in B^\mathbb{T} \).

Definition

A lifting of an object \(M \in A \) is an object \(\hat{M} \in B^\mathbb{T} \) together with an isomorphism \(K^\mathbb{T}_*(\hat{M}) \to M \).

Classification + range results \(\leftrightarrow \) uniqueness + existence of liftings

Classification for circle actions on \(C^* \)-algebras

Rasmus Bentmann 3
Motivational case: $\text{KK}^\mathbb{T}$

- Objects: separable \mathbb{T}-C^*-algebras
- Morphisms: $\text{KK}^\mathbb{T}$-classes
- Composition: Kasparov product

Consider the functor $A \mapsto K^\mathbb{T}_*(A) \cong K_*(A \rtimes \mathbb{T}) \cong \text{KK}^\mathbb{T}_*(\mathbb{C}, A)$.

We have $K^\mathbb{T}: \text{KK}^\mathbb{T} \to \mathcal{A} := \text{Mod}(\mathbb{Z}[x, x^{-1}])^\mathbb{Z}/2_c$ via the dual action.
Motivational case: $\text{KK}^\mathbb{T}$

- Objects: separable \mathbb{T}-C^*-algebras
- Morphisms: $\text{KK}^\mathbb{T}$-classes
- Composition: Kasparov product

Consider the functor $A \mapsto K_*^\mathbb{T}(A) \cong K_*(A \rtimes \mathbb{T}) \cong \text{KK}^\mathbb{T}_*(\mathbb{C}, A)$. We have $K^\mathbb{T}: \text{KK}^\mathbb{T} \to \mathcal{A} := \text{Mod}(\mathbb{Z}[x, x^{-1}])_{\mathbb{Z}/2}^c$ via the dual action.

Definition/Theorem (Meyer–Nest)

$A \in B^\mathbb{T} \iff A \rtimes \mathbb{T} \in B$.

Classification for circle actions on C^*-algebras

Rasmus Bentmann
Motivational case: KK^T

- Objects: separable \mathbb{T}-\mathbb{C}^*-algebras
- Morphisms: KK^T-classes
- Composition: Kasparov product

Consider the functor $A \mapsto K^T_*(A) \cong K_*(A \rtimes \mathbb{T}) \cong \text{KK}^T_*(\mathbb{C}, A)$. We have $K^T: \text{KK}^T \rightarrow \mathcal{A} := \text{Mod}(\mathbb{Z}[x, x^{-1}])_{\mathbb{Z}/2}^c$ via the dual action.

Definition/Theorem (Meyer–Nest)

$A \in \mathcal{B}^T \iff A \rtimes \mathbb{T} \in \mathcal{B}$.

Definition

A **lifting** of an object $M \in \mathcal{A}$ is an object $\hat{M} \in \mathcal{B}^T$ together with an isomorphism $K^T_*(\hat{M}) \rightarrow M$.

Classification for circle actions on \mathbb{C}^*-algebras

Rasmus Bentmann
Motivational case: $\text{KK}^\mathbb{T}$

- Objects: separable \mathbb{T}-C^*-algebras
- Morphisms: $\text{KK}^\mathbb{T}$-classes
- Composition: Kasparov product

Consider the functor $A \mapsto K_*^\mathbb{T}(A) \cong K_*(A \rtimes \mathbb{T}) \cong \text{KK}^\mathbb{T}_*(\mathbb{C}, A)$.

We have $K^\mathbb{T} : \text{KK}^\mathbb{T} \to \mathcal{A} := \text{Mod}(\mathbb{Z}[x, x^{-1}])^{\mathbb{Z}/2}_c$ via the dual action.

Definition/Theorem (Meyer–Nest)

$A \in B^\mathbb{T} \iff A \rtimes \mathbb{T} \in B$.

Definition

A lifting of an object $M \in \mathcal{A}$ is an object $\hat{M} \in B^\mathbb{T}$ together with an isomorphism $K_*^\mathbb{T}(\hat{M}) \to M$.

Classification + range results \iff uniqueness + existence of liftings
Motivational case: \(\text{KK}^\mathbb{T} \)

- Objects: separable \(\mathbb{T} \)-\(\text{C}^* \)-algebras
- Morphisms: \(\text{KK}^\mathbb{T} \)-classes
- Composition: Kasparov product

Consider the functor \(A \mapsto \text{K}_*^\mathbb{T}(A) \cong \text{K}_*(A \times \mathbb{T}) \cong \text{KK}_*^\mathbb{T}(\mathbb{C}, A) \).

We have \(\text{K}_*^\mathbb{T} : \text{KK}^\mathbb{T} \rightarrow \mathfrak{A} := \text{Mod}(\mathbb{Z}[x, x^{-1}])_{\mathbb{Z}/2}^\mathfrak{c} \) via the dual action.

Definition/Theorem (Meyer–Nest)

\(A \in \mathbb{B}^\mathbb{T} \iff A \times \mathbb{T} \in \mathbb{B} \).

Definition

A **lifting** of an object \(M \in \mathfrak{A} \) is an object \(\hat{M} \in \mathbb{B}^\mathbb{T} \) **together with** an isomorphism \(\text{K}_*^\mathbb{T}(\hat{M}) \rightarrow M \).

Classification + range results \(\iff \) uniqueness + existence of liftings
Motivational case: $\mathbf{KK}^\mathbb{T}$ (Zero and Projectives)

Lemma

If $A \in \mathcal{B}^\mathbb{T}$ and $K^\mathbb{T}_\ast(A) \cong 0$ then $A \cong 0$.

“$K^\mathbb{T}_\ast$ vanishes on sufficiently few objects.”
Motivational case: $\text{KK}^\mathbb{T}$ (Zero and Projectives)

Lemma

If $A \in \mathcal{B}^\mathbb{T}$ and $\text{K}^\mathbb{T}_*(A) \cong 0$ then $A \cong 0$.

“$\text{K}^\mathbb{T}_*$ vanishes on sufficiently few objects.”

Corollary

$0 \in \mathcal{A}$ has a unique lifting.
Motivational case: $KK^\mathbb{T}$ (Zero and Projectives)

Lemma

If $A \in B^\mathbb{T}$ and $K^\mathbb{T}_*(A) \cong 0$ then $A \cong 0$.

“$K^\mathbb{T}_*$ vanishes on sufficiently few objects.”

Corollary

$0 \in \mathcal{A}$ has a unique lifting.

Theorem (Meyer–Nest)

There is a fully faithful functor $\mathcal{A} \supset \text{Proj} \xrightarrow{L} KK^\mathbb{T}$ such that

\[K^\mathbb{T}_*(L(P)) \cong P \]
\[KK^\mathbb{T}_*(L(P), B) \cong \mathcal{A}(P, K^\mathbb{T}_*(B)) \text{ for every } B \in B^\mathbb{T}. \]
Motivational case: KK^T (Zero and Projectives)

Lemma

If $A \in B^T$ and $K^*_T(A) \cong 0$ then $A \cong 0$.

“K^*_T vanishes on sufficiently few objects.”

Corollary

$0 \in \mathcal{A}$ has a unique lifting.

Theorem (Meyer–Nest)

There is a fully faithful functor $\mathcal{A} \supset \text{Proj} \xrightarrow{L} \text{KK}^T$ such that

$\triangleright K^*_T(L(P)) \cong P$

$\triangleright \text{KK}^*_T(L(P), B) \cong \mathcal{A}(P, K^*_T(B))$ for every $B \in B^T$.

“K^*_T is universal (\mathcal{A} has sufficiently few morphisms).”

Classification for circle actions on C*-algebras
Rasmus Bentmann 4
Motivational case: $KK^\mathbb{T}$ (Zero and Projectives)

Lemma

If $A \in B^\mathbb{T}$ and $K_*^\mathbb{T}(A) \cong 0$ then $A \cong 0$.

“$K_*^\mathbb{T}$ vanishes on sufficiently few objects.”

Corollary

$0 \in \mathcal{A}$ has a unique lifting.

Theorem (Meyer–Nest)

There is a fully faithful functor $\mathcal{A} \supset \mathcal{Proj} \xrightarrow{L} KK^\mathbb{T}$ such that

\[K_*^\mathbb{T}(L(P)) \cong P \]
\[KK_*^\mathbb{T}(L(P), B) \cong \mathcal{A}(P, K_*^\mathbb{T}(B)) \text{ for every } B \in B^\mathbb{T}. \]

“$K_*^\mathbb{T}$ is universal (\mathcal{A} has sufficiently few morphisms).”

Corollary

Projectives in \mathcal{A} have unique liftings.
Motivational case: $\text{KK}^\mathbb{T}$ (Zero and Projectives)

Lemma
If $A \in B^\mathbb{T}$ and $K_*^\mathbb{T}(A) \cong 0$ then $A \cong 0$.

“$K_*^\mathbb{T}$ vanishes on sufficiently few objects.”

Corollary
0 ∈ \mathcal{A} has a unique lifting.

Theorem (Meyer–Nest)
There is a fully faithful functor $\mathcal{A} \ni \text{Proj} \xrightarrow{L} \text{KK}^\mathbb{T}$ such that

1. $K_*^\mathbb{T}(L(P)) \cong P$
2. $\text{KK}_*^\mathbb{T}(L(P), B) \cong \mathcal{A}(P, K_*^\mathbb{T}(B))$ for every $B \in B^\mathbb{T}$.

“$K_*^\mathbb{T}$ is universal (\mathcal{A} has sufficiently few morphisms).”

Corollary
Projectives in \mathcal{A} have unique liftings.
Motivational case: $KK^\mathbb{T}$ (Dimensions 1 and 2)

Theorem (Meyer–Nest)

If $A \in \mathcal{B}^\mathbb{T}$ and $K_\ast(A)$ has projective dimension ≤ 1 then there is a natural short exact sequence

$$\text{Ext}^1_\mathcal{A}(K_\ast(\Sigma A), K_\ast(B)) \hookrightarrow KK^\mathbb{T}(A, B) \twoheadrightarrow \text{Hom}_\mathcal{A}(K_\ast(A), K_\ast(B)).$$

Corollary

If $M \in \mathcal{A}$ has projective dimension ≤ 1 then it has a unique lifting.
Motivational case: $\text{KK}^\mathbb{T}$ (Dimensions 1 and 2)

Theorem (Meyer–Nest)

If $A \in B^\mathbb{T}$ and $K^\mathbb{T}(A)$ has projective dimension ≤ 1 then there is a natural short exact sequence

$$\text{Ext}_1^\mathbb{A}(K^\mathbb{T}(\Sigma A), K^\mathbb{T}(B)) \hookrightarrow \text{KK}^\mathbb{T}(A, B) \twoheadrightarrow \text{Hom}_\mathbb{A}(K^\mathbb{T}(A), K^\mathbb{T}(B)).$$

Corollary

If $M \in \mathcal{A}$ has projective dimension ≤ 1 then it has a unique lifting.

Theorem

If $M \in \mathcal{A}$ has projective dimension ≤ 2 (automatic in this example) then iso-classes of liftings of M are in bijection with $\text{Ext}_2^\mathbb{A}(\Sigma M, M)$.
Motivational case: \mathbf{KK}^T (Dimensions 1 and 2)

Theorem (Meyer–Nest)

If $A \in B^T$ and $K_*(A)$ has projective dimension ≤ 1 then there is a natural short exact sequence

$$\text{Ext}_A^1(K_*(\Sigma A), K_*(B)) \hookrightarrow \mathbf{KK}_*(A, B) \rightarrow \text{Hom}_A(K_*(A), K_*(B)).$$

Corollary

If $M \in A$ has projective dimension ≤ 1 then it has a unique lifting.

Theorem

If $M \in A$ has projective dimension ≤ 2 (automatic in this example) then iso-classes of liftings of M are in bijection with $\text{Ext}_A^2(\Sigma M, M)$.

Hence if $M = M_+ \oplus M_-$ then M_\pm have unique liftings \hat{M}_\pm.

$\hat{M}_+ \oplus \hat{M}_-$ is the **canonical lifting** of M corresponding to $0 \in \text{Ext}_A^2(\Sigma M, M)$.

Classification for circle actions on C^*-algebras

Rasmus Bentmann
Motivational case: KK^T (Dimensions 1 and 2)

Theorem (Meyer–Nest)

If $A \in B^T$ and $K_\pi^T(A)$ has projective dimension ≤ 1 then there is a natural short exact sequence

$$
\text{Ext}_{\mathfrak{A}}^1(K_\pi^T(\Sigma A), K_\pi^T(B)) \hookrightarrow \text{KK}^T(A, B) \twoheadrightarrow \text{Hom}_{\mathfrak{A}}(K_\pi^T(A), K_\pi^T(B)).
$$

Corollary

If $M \in \mathfrak{A}$ has projective dimension ≤ 1 then it has a unique lifting.

Theorem

If $M \in \mathfrak{A}$ has projective dimension ≤ 2 (automatic in this example) then iso-classes of liftings of M are in bijection with $\text{Ext}_{\mathfrak{A}}^2(\Sigma M, M)$.

Hence if $M = M_+ \oplus M_-$ then M_\pm have unique liftings \hat{M}_\pm. $\hat{M}_+ \oplus \hat{M}_-$ is the canonical lifting of M corresponding to $0 \in \text{Ext}_{\mathfrak{A}}^2(\Sigma M, M)$.

Classification for circle actions on C*-algebras
Motivational case: $\text{KK}^\mathbb{T}$ (Classification)

How to get a classification functor?

Definition

$\mathcal{A}\delta$ is the category of pairs (M, δ) with $M \in \mathcal{A}$, $\delta \in \text{Ext}_{\mathcal{A}}^2(\Sigma M, M)$. A morphism $(M, \delta) \to (M', \delta')$ is $f : M \to M'$ s.t. $\delta' f = f \delta$.

Theorem

There is a dense strong classification functor $(\text{K}_\ast^\mathbb{T}, \delta) : \mathcal{B}^\mathbb{T} \to \mathcal{A}\delta$.

δ̂(M̂) measures the difference of M̂ and M̂ + ⊕ M̂ −. Observed earlier by Aldridge K. Bousfield for K-local spectra at an odd prime, Jerome Wolbert, more generally, for certain module spectra.

Example: Cuntz–Krieger algebras

$O_A \cong \text{KK}^\mathbb{T} O_B \iff \text{K}_\ast^\mathbb{T}(O_A) \cong \text{K}_\ast^\mathbb{T}(O_B) \iff A \cong Z_B$.

Classification for circle actions on \mathbb{C}^*-algebras Rasmus Bentmann 6
Motivational case: $\text{KK}^\mathbb{T}$ (Classification)

How to get a classification functor?

Definition

\mathfrak{A}_δ is the category of pairs (M, δ) with $M \in \mathfrak{A}$, $\delta \in \text{Ext}^2_{\mathfrak{A}}(\Sigma M, M)$. A morphism $(M, \delta) \to (M', \delta')$ is $f : M \to M'$ s.t. $\delta'f = f\delta$.

Theorem

There is a dense strong classification functor $(\text{K}_{\!}^\mathbb{T}, \delta) : \mathcal{B}^\mathbb{T} \to \mathfrak{A}_\delta$.*

“$\delta(\hat{M})$ measures the difference of \hat{M} and $\hat{M}_+ \oplus \hat{M}_-$. “
Motivational case: \(\mathbf{KK}^\mathbb{T} \) (Classification)

How to get a classification functor?

Definition
\(\mathfrak{A} \delta \) is the category of pairs \((M, \delta)\) with \(M \in \mathfrak{A}, \delta \in \text{Ext}^2_{\mathfrak{A}}(\Sigma M, M) \).
A morphisms \((M, \delta) \to (M', \delta')\) is \(f : M \to M' \) s.t. \(\delta' f = f \delta \).

Theorem

There is a dense strong classification functor \((\mathbf{K}^\mathbb{T}_*, \delta) : \mathcal{B}^\mathbb{T} \to \mathfrak{A} \delta.\)

“\(\delta(\hat{M}) \) measures the difference of \(\hat{M} \) and \(\hat{M}_+ \oplus \hat{M}_- \).”

Observed earlier by

- Aldridge K. Bousfield for K-local spectra at an odd prime,
- Jerome Wolbert, more generally, for certain module spectra.
Motivational case: \(\text{KK}^\mathbb{T} \) (Classification)

How to get a classification functor?

Definition

\(\mathcal{A}_\delta \) is the category of pairs \((M, \delta)\) with \(M \in \mathcal{A}, \delta \in \text{Ext}_A^2(\Sigma M, M) \).

A morphisms \((M, \delta) \to (M', \delta')\) is \(f: M \to M' \) s.t. \(\delta' f = f \delta \).

Theorem

There is a dense strong classification functor \((\text{KT}^\mathbb{T}, \delta): \mathcal{B}^\mathbb{T} \to \mathcal{A}_\delta \).

“\(\delta(\hat{M}) \) measures the difference of \(\hat{M} \) and \(\hat{M}_+ \oplus \hat{M}_- \).”

Observed earlier by

- Aldridge K. Bousfield for K-local spectra at an odd prime,
- Jerome Wolbert, more generally, for certain module spectra.

Example: Cuntz–Krieger algebras

\[O_A \simeq_{\text{KK}^\mathbb{T}} O_B \iff \text{KT}_*(O_A) \simeq \text{KT}_*(O_B) \iff A \sim_\mathbb{Z} B. \]
Motivational case: $\text{KK}^\mathbb{T}$ (Classification)

How to get a classification functor?

Definition

\mathcal{A}_δ is the category of pairs (M, δ) with $M \in \mathcal{A}$, $\delta \in \text{Ext}^2_A(\Sigma M, M)$. A morphism $(M, \delta) \rightarrow (M', \delta')$ is $f: M \rightarrow M'$ s.t. $\delta'f = f\delta$.

Theorem

There is a dense strong classification functor $(K^\mathbb{T}_, \delta): B^\mathbb{T} \rightarrow \mathcal{A}_\delta$. “$\delta(\hat{M})$ measures the difference of \hat{M} and $\hat{M}_+ \oplus \hat{M}_-.$”*

Observed earlier by

- Aldridge K. Bousfield for K-local spectra at an odd prime,
- Jerome Wolbert, more generally, for certain module spectra.

Example: Cuntz–Krieger algebras

$\mathcal{O}_A \simeq_{\text{KK}^\mathbb{T}} \mathcal{O}_B \iff K^\mathbb{T}_*(\mathcal{O}_A) \cong K^\mathbb{T}_*(\mathcal{O}_B) \iff A \simeq_{\mathbb{Z}} B.$
Second application: $KK(X)$

- X finite T_0-space
- Objects: separable C^*-algebras over X
 \((U \subseteq X \text{ open } \leadsto A(U) \triangleleft A)\)
- Morphisms: $KK(X)$-classes
- Composition: Kasparov product
Second application: \(\text{KK}(X) \)

- \(X \) finite \(T_0 \)-space
- Objects: separable \(\text{C}^* \)-algebras over \(X \)
 \((U \subseteq X \text{ open } \leadsto A(U) \triangleleft A) \)
- Morphisms: \(\text{KK}(X) \)-classes
- Composition: Kasparov product

Definition (Meyer–Nest)

\[\mathcal{B}(X) \text{ is the localizing subcategory generated by } \{i_x \mathbb{C} \mid x \in X\}. \]
Second application: $\text{KK}(X)$

- X finite T_0-space
- Objects: separable C^*-algebras over X
 $(U \subseteq X \text{ open } \leadsto A(U) \otimes A)$
- Morphisms: $\text{KK}(X)$-classes
- Composition: Kasparov product

Definition (Meyer–Nest)

$\mathcal{B}(X)$ is the localizing subcategory generated by $\{i_x \mathbb{C} \mid x \in X\}$.

$\text{KK}_*(X; i_x \mathbb{C}, A) \cong K_*(A(U_x))$
(here U_x is the smallest open neighborhood of x)
Second application: $\text{KK}(X)$

- X finite T_0-space
- Objects: separable C*-algebras over X
 \((U \subseteq X \text{ open } \leadsto A(U) \triangleleft A)\)
- Morphisms: $\text{KK}(X)$-classes
- Composition: Kasparov product

Definition (Meyer–Nest)

$\mathcal{B}(X)$ is the localizing subcategory generated by \(\{i_x \mathbb{C} \mid x \in X\}\).

$\text{KK}_*(X; i_x \mathbb{C}, A) \cong K_*(A(U_x))$

(here U_x is the smallest open neighborhood of x)

Definition

$XK(A) = \left(K_*(A(U_x)) \right)_{x \in X}$
Second application: \(KK(X) \)

- \(X \) finite \(T_0 \)-space
- **Objects**: separable \(C^* \)-algebras over \(X \)

 \((U \subseteq X \text{ open } \leadsto A(U) \triangleleft A) \)

- **Morphisms**: \(KK(X) \)-classes

- **Composition**: Kasparov product

Definition (Meyer–Nest)

\(\mathcal{B}(X) \) is the localizing subcategory generated by \(\{ i_x \mathbb{C} \mid x \in X \} \).

\[KK_\ast(X; i_x \mathbb{C}, A) \cong K_\ast(A(U_x)) \]

(Here \(U_x \) is the smallest open neighborhood of \(x \)).

Definition

\[XK(A) = \left(K_\ast(A(U_x)) \right)_{x \in X} \]

\[XK : KK(X) \to \text{Mod} (\mathbb{Z}X)_{\mathbb{Z}/2}^c \text{ via maps induced by ideal inclusions.} \]
Second application: $KK(X)$

- X finite T_0-space
- Objects: separable C*-algebras over X

 $(U \subseteq X$ open $\leadsto A(U) \triangleleft A)$
- Morphisms: $KK(X)$-classes
- Composition: Kasparov product

Definition (Meyer–Nest)

$B(X)$ is the localizing subcategory generated by $\{i_x\mathbb{C} \mid x \in X\}$.

$KK_*(X; i_x\mathbb{C}, A) \cong K_*(A(U_x))$

(here U_x is the smallest open neighborhood of x)

Definition

$XK(A) = \left(K_*(A(U_x)) \right)_{x \in X}$

$XK: KK(X) \to \mathcal{Mod}(\mathbb{Z}X)_{\mathbb{Z}/2}$ via maps induced by ideal inclusions.
Second application: KK(\(X\)) over unique path space

Let \(X\) be a unique path space.
For instance \(\bullet \rightarrow \bullet \) but not \(\bullet \rightarrow \bullet \)

\[\begin{array}{ccc}
\bullet & \rightarrow & \bullet \\
\downarrow & & \downarrow \\
\bullet & \rightarrow & \bullet \\
\end{array} \]

\[\begin{array}{ccc}
\bullet & \rightarrow & \bullet \\
\downarrow & & \downarrow \\
\bullet & \rightarrow & \bullet \\
\end{array} \]

Theorem

If \(X\) is a unique path space then \(\mathbb{Z}X \) is an integral quiver algebra and hence has cohomological dimension 2.
Second application: \(KK(X) \) over unique path space

Let \(X \) be a unique path space. For instance \(\bullet \rightarrow \bullet \) but not \(\bullet \rightarrow \bullet \).

\begin{center}
\begin{tikzpicture}
 \node (A) at (0,0) [circle,fill,inner sep=1.5pt] {};
 \node (B) at (1,1) [circle,fill,inner sep=1.5pt] {};
 \node (C) at (1,0) [circle,fill,inner sep=1.5pt] {};
 \node (D) at (2,0) [circle,fill,inner sep=1.5pt] {};
 \draw (A) -- (B) -- (C) -- (D);
 \draw (A) -- (D);
\end{tikzpicture}
\end{center}

Theorem

If \(X \) is a unique path space then \(\mathbb{Z}X \) is an integral quiver algebra and hence has cohomological dimension 2. Hence there is a dense strong classification functor \((\mathcal{X}K, \delta) : \mathcal{B}(X) \rightarrow \text{Mod}(\mathbb{Z}X)^{\mathbb{Z}/2}_c \delta \).

Corollary (using Kirchberg’s classification)

Strong classification up to \(\star \)-isomorphism of stable Kirchberg \(X \)-algebras in \(\mathcal{B}(X) \) including a description of the range.

(A Kirchberg \(X \)-algebra is a separable nuclear tight \(\mathcal{O}_\infty \)-absorbing \(\mathcal{C}^* \)-algebra over \(X \).)
Second application: $KK(X)$ over unique path space

Let X be a unique path space.
For instance $ \bullet \xrightarrow{} \bullet $ but not $ \bullet \xrightarrow{} \bullet $.

\begin{align*}
\bullet & \xrightarrow{} \bullet \\
\bullet & \xrightarrow{} \bullet
\end{align*}

Theorem

If X is a unique path space then $\mathbb{Z}X$ is an integral quiver algebra and hence has cohomological dimension 2. Hence there is a dense strong classification functor $(\mathcal{XK}, \delta): \mathcal{B}(X) \to \text{Mod}(\mathbb{Z}X)^{\mathbb{Z}/2}_c \delta$.

Corollary (using Kirchberg’s classification)

Strong classification up to \ast-isomorphism of stable Kirchberg X-algebras in $\mathcal{B}(X)$ including a description of the range.
Second application: \(KK(X) \) over unique path space

Let \(X \) be a unique path space.
For instance \(\bullet \rightarrow \bullet \) but not \(\bullet \rightarrow \bullet \)

\[\begin{array}{c}
\bullet \rightarrow \bullet \\
\downarrow \\
\bullet \\
\end{array} \]

\[\begin{array}{c}
\bullet \rightarrow \bullet \\
\downarrow \\
\bullet \\
\end{array} \]

Theorem

If \(X \) *is a unique path space then* \(\mathbb{Z}X \) *is an integral quiver algebra and hence has cohomological dimension 2. Hence there is a dense strong classification functor* \((XK, \delta) : \mathcal{B}(X) \rightarrow \text{Mod}(\mathbb{Z}X)_{\mathbb{Z}/2}^{\delta}\).*

Corollary (using Kirchberg’s classification)

*Strong classification up to *\(-\)isomorphism of stable Kirchberg X-algebras in \(\mathcal{B}(X) \) including a description of the range.*

(A Kirchberg X-algebra is a separable nuclear tight \(\mathcal{O}_{\infty} \)-absorbing \(\mathbb{C}^ \)-algebra over \(X \).*
Second application: \(\text{KK}(X) \) over unique path space

Let \(X \) be a unique path space. For instance, \(\bullet \rightarrow \bullet \) but not \(\bullet \rightarrow \bullet \)

Theorem

If \(X \) is a unique path space then \(\mathbb{Z}X \) is an integral quiver algebra and hence has cohomological dimension 2. Hence there is a dense strong classification functor \((\mathcal{XK}, \delta): \mathcal{B}(X) \rightarrow \text{Mod}(\mathbb{Z}X)^{\mathbb{Z}/2}_c \delta \).

Corollary (using Kirchberg’s classification)

Strong classification up to \(\)-isomorphism of stable Kirchberg \(X \)-algebras in \(\mathcal{B}(X) \) including a description of the range.*

(A Kirchberg \(X \)-algebra is a separable nuclear tight \(\mathcal{O}_\infty \)-absorbing \(C^* \)-algebra over \(X \).)
Second application: $\text{KK}(X)$ for graph algebras

Let X be an arbitrary finite T_0-space.

Theorem

If E is row-finite and all distinguished ideals of $C^*(E)$ are gauge-invariant then $\text{XK}(C^*(E))$ has projective dimension ≤ 2.

To do: find range results in this context.
Second application: $\text{KK}(X)$ for graph algebras

Let X be an arbitrary finite T_0-space.

Theorem

If E is row-finite and all distinguished ideals of $C^(E)$ are gauge-invariant then $\text{XK}(C^*(E))$ has projective dimension ≤ 2.***

Corollary (using Kirchberg’s classification)

Strong classification up to \ast-isomorphism of stable/unital purely infinite graph C^-algebras with finitely many ideals.*
Second application: $\text{KK}(X)$ for graph algebras

Let X be an arbitrary finite T_0-space.

Theorem

If E is row-finite and all distinguished ideals of $C^(E)$ are gauge-invariant then $\text{XK}(C^*(E))$ has projective dimension ≤ 2.***

Corollary (using Kirchberg’s classification)

Strong classification up to \ast-isomorphism of stable/unital purely infinite graph C^-algebras with finitely many ideals.*

Theorem

The element $\delta(C^(E)) \in \text{Ext}^2_{\mathbb{Z}X}(\text{XK}(\Sigma C^*(E)), \text{XK}(C^*(E)))$ is given by the dual Pimsner–Voiculescu sequence

$\text{XK}_1(C^*(E)) \hookrightarrow \text{XK}_0(C^*(E)^{\mathbb{T}}) \to \text{XK}_0(C^*(E)^{\mathbb{T}}) \to \text{XK}_0(C^*(E)).$*
Second application: $\text{KK}(X)$ for graph algebras

Let X be an arbitrary finite T_0-space.

Theorem

If E is row-finite and all distinguished ideals of $C^(E)$ are gauge-invariant then $\text{XK}(C^*(E))$ has projective dimension ≤ 2.***

Corollary (using Kirchberg’s classification)

*Strong classification up to *-isomorphism of stable/unital purely infinite graph C^*-algebras with finitely many ideals.*

Theorem

The element $\delta(C^(E)) \in \text{Ext}^2_{\mathbb{Z}}(\text{XK}(\Sigma C^*(E)), \text{XK}(C^*(E)))$ is given by the dual Pimsner–Voiculescu sequence*

\[\text{XK}_1(C^*(E)) \rightarrow \text{XK}_0(C^*(E)\mathbb{T}) \rightarrow \text{XK}_0(C^*(E)\mathbb{T}) \rightarrow \text{XK}_0(C^*(E)). \]

To do: find range results in this context.
Second application: $KK(X)$ for graph algebras

Let X be an arbitrary finite T_0-space.

Theorem

If E is row-finite and all distinguished ideals of $C^(E)$ are gauge-invariant then $XK(C^*(E))$ has projective dimension ≤ 2.***

Corollary (using Kirchberg’s classification)

*Strong classification up to *-isomorphism of stable/unital purely infinite graph C^*-algebras with finitely many ideals.*

Theorem

The element $\delta(C^(E)) \in \text{Ext}^2_{\mathbb{Z}X}(XK(\Sigma C^*(E)), XK(C^*(E)))$ is given by the dual Pimsner–Voiculescu sequence*

$$XK_1(C^*(E)) \hookrightarrow XK_0(C^*(E)^T) \rightarrow XK_0(C^*(E)^T) \rightarrow XK_0(C^*(E)).$$

To do: find range results in this context.
Thank you for your attention!