In this minicourse, we discuss lattices in $\text{SL}_n(\mathbb{R})$.

Def. A lattice in $\text{SL}_n(\mathbb{R})$ is a discrete subgroup such that $\text{vol}(\text{SL}_n(\mathbb{R})/\Gamma) < \infty$.

Example: $\text{SL}_n(\mathbb{Z})$.

We shall prove the following 3 main results:

1) Borel density thm.

2) (Kazhdan) $\Gamma < \text{SL}_n(\mathbb{R})$, $n \geq 3$, is finitely generated.

3) (Margulis) $\Gamma < \text{SL}_n(\mathbb{R})$, $n \geq 3$, and $N \leq \Gamma$.

Then Γ/N is finite.

Borel density thm.

Thm. Γ - lattice in $G = \text{SL}_n(\mathbb{R})$

$\phi: G \to \text{GL}_N(\mathbb{R})$ - polynomial homomorphism.

Then $\forall \sigma \in \mathbb{R}^N$: $\phi(\Gamma) \sigma = \sigma \Rightarrow \phi(G) \sigma = \sigma$.

Idea: Recurrence (ergodic theory) \leftrightarrow Transience (algebraic actions)
Lem. 1 (Poincare recurrence)

\(X \) - compact metric space

\(T : X \to X \) - homeomorphism

\(\mu \) - invariant Borel probability measure on \(X \)

Then for \(\mu \)-a.e. \(x \in X \),

\(T^{n_i} x \to x \) along a subsequence \(n_i \to \infty \).

Lem. 2

\(T \in \text{GL}_N(\mathbb{R}) \) - unipotent,

\(T \subset \mathbb{P}^{N-1} \) - projective space,

\([v] \in \mathbb{P}^{N-1}, \ n_i \to \infty \).

Then

\[T^{n_i} [v] \to [v] \quad \Rightarrow \quad T v = v. \]

\[\text{Let} \ T = I + S, \text{ where } S \text{ is nilpotent.} \]

\[\text{Pick } k \text{ such that } S^k v = 0 \text{ and } S^{k+1} v = 0. \]

\[T^{n} [v] = [(I+S)^n v] = \left[\sum_{i=0}^{k} \binom{n}{i} S^i v \right] \to [S^k v]. \]

Since \(S \) is nilpotent, \([S^k v] = [v] \Rightarrow k = 0. \)

Proof of Thm. Consider the map

\(\pi : G_T \to \mathbb{P}^{N-1} : g \mapsto [f(g)v] \),

and define measure \(\nu \) on \(\mathbb{P}^{N-1} \):

\[\nu(B) = \mu(\pi^{-1}(B)), \quad B \subset \mathbb{P}^{N-1}, \]

where \(\mu \) is the inv. prob. measure on \(G_T \).
Then \(\nu(P^{N-1}) = 1 \), and \(\nu \) is \(\rho(G) \)-inv.

Take unipotent \(g \in G \), \(g \neq 1 \).

Then \(T = \rho(g) \) is unipotent.

Indeed, if \(Tw = \lambda w \), then
\[
\rho(g^n) w = \rho(g)^n w = \lambda^n w,
\]
so that \(\lambda = 1 \).

By Lem. 1 & Lem. 2, for \(\nu \)-a.e. \([w] \in P^{N-1} \):
\[
T w = w.
\]

Equivalently, for a.e. \(h \in G \), \(T \rho(h) \omega = \rho(h) \omega \).

Then \(\rho(h-g \cdot h) \cdot \omega = \omega \) for all \(h \in G \),
and \(\rho(G) \cdot \omega = \omega \) because \(SL_n(R) \) has no nontrivial infinite normal subgroups.

Thm. (Margulis) \(\Gamma \)-a lattice in \(SL_n(R) \), \(n \geq 3 \).

\(N \triangleleft \Gamma \) - infinite.

Then \(|\Gamma/N| < \infty|\).

Strategy: \(\Gamma/N \) is amenable \(\Gamma/N \) has property (T) \(\Rightarrow \) \(\Gamma/N \)-finite.
Amenability

G - topological group (e.g., $G = \text{a closed subgroup of } SL_2(\mathbb{R})$).

Def. V - locally convex top vector space
S2 - nonempty, compact, convex
G \rhd S2 - affine continuous action.

The group G is called **amenable** if S2 contains a G-fixed point.

Application. X - compact metric space
G \rhd X - continuous action.

Then $G \rhd \text{Prob}(X)$ - convex and compact (in weak* topology).

Hence, \exists G-inv. prob. measure on X.

Prop. \mathbb{Z}^d and \mathbb{R}^d are amenable.

Consider $\mathbb{Z}^d \rhd S2$.

Let $B_N = [1, N]^d$ and $\omega_N = \frac{1}{|B_N|} \sum_{z \in B_N} z \cdot w$ for $w \in S2$.

| $\frac{|B_N \Delta (z_0 + B_N)|}{|B_N|}$ | $\rightarrow 0$ | $N \rightarrow \infty$ |
|-------------------------------------|-----------------|------------------|
| B_N | $z_0 + B_N$ |
Then \(z_0 \cdot w_N - w_N = \frac{1}{|B_N|} \left(\sum_{z \in (z_0 + B_N) \setminus B_N} z \cdot w - \sum_{z \in B_N \setminus (z_0 + B_N)} z \cdot w \right) \in \frac{|B_N \setminus (z_0 + B_N)|}{|B_N|} (\pm \Omega) \to 0. \)

By compactness, \(w_{n_i} \to w_\infty \in \mathcal{S}_2, \) and \(z_0 \cdot w = w \) for all \(z_0 \in \mathbb{Z}^d. \)

Prop. Suppose that \(G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_e \supseteq G_{e+1} = \{e\} \)
where \(G_i \) is closed and \(G_i/G_{i+1} \) is amenable.

Then \(G \) is amenable.

Consider \(G \subseteq \mathcal{S}_2. \)

Since \(G_e \) is amenable, \(\mathcal{S}_2^{G_e} \neq \emptyset. \)

Clearly, \(\mathcal{S}_2^{G_e} \) is closed (\(\Rightarrow \) compact) and convex.

Consider \(G_{e-1}/G_e \subseteq \mathcal{S}_2^{G_e}. \)

Prop. \(SL_n(\mathbb{R}) \) is not amenable.

Consider \(SL_n(\mathbb{R}) \subseteq P^{n-1}. \)

Suppose that \(SL_n(\mathbb{R}) \) is amenable.

Then \(\exists \) invariant prob. measure \(\nu \) on \(P^{n-1}. \)

However, \(\text{supp} (\nu) \subseteq \text{Fix}(g) \) for unipotent \(g. \)

Since \(SL_n(\mathbb{R}) \) is generated by unipotents,
\[\text{Supp}(\nu) \subset \text{Fix}(G) = \emptyset \]

which is a contradiction.

Now we assume that \(G \) is discrete and countable.

\[\text{amenability} \quad \iff \quad \text{invariant means} \quad \iff \quad \text{almost invariant vectors} \]

Def. A linear map \(M: L^\infty(G) \to \mathbb{C} \) is (left) invariant mean if

1. \(M(1) = 1 \)
2. \(f \geq 0 \Rightarrow M(f) \geq 0 \)
3. \(M(g \cdot f) = M(f) \) for \(g \in G \).
 (here: \((g \cdot f)(x) = f(gx) \))

Note that

\[-\|f\|_\infty \leq f \leq \|f\|_\infty \Rightarrow -\|f\|_\infty \leq M(f) \leq \|f\|_\infty \Rightarrow |M(f)| \leq \|f\|_\infty, \]

so that \(M \in L^\infty(G)^* \).

Thm. \(G \) is amenable \(\iff \exists \) invariant mean on \(L^\infty(G) \).

\[\Rightarrow L^\infty(G)^* = \left\{ \begin{array}{c} \text{bounded linear functionals} \\ \text{on } L^\infty(G)^* \text{ with weak* topology} \end{array} \right\} \]

\[\cup \]

\[M = \left\{ M : (1) \& (2) \right\} \quad \begin{cases} \text{convex} \\ \text{nonempty} \quad (\text{e.g. Dirac measures}) \end{cases} \quad \text{compact} \quad (\text{Banach- Alaoglu Thm}) \]
This action is continuous in weak* topology. Hence, $M \in G$-fixed point.

Thm. G is amenable $\iff \left[\forall \text{finite } K \subset G, \exists \psi_n \in L^2(G): \|\psi_n\|=1; \|g \cdot \psi_n - \psi_n\| \to 0 \text{ for } g \in K. \right]$

(almost invariant vector)

Let M be an invariant mean on $L^\infty(G)$. For $\varphi \in L^1(G)$, we define $L\varphi \in L^\infty(G)^*$ by

$$L\varphi(f) = \langle \varphi, f \rangle = \sum_{x \in G} \varphi(x)f(x).$$

For a finite partition $G = \{G_1, \ldots, G_e\}$ of G, use define $\psi_\varepsilon(g) = \sum_{i=1}^e M(X_{G_i}) X_{g_i} \in L^1(G)$, where $g_i \in G_i$.

Then $\|\psi_\varepsilon\| = \sum_{i=1}^e M(X_{G_i}) = 1$.

If σ is a refinement of the partition $\{A, G \setminus A\}$, then $\langle \psi_\varepsilon, X_A \rangle = M(X_A)$.

Recall: the weak topology on $L'(G)$:
$$\varphi \to \psi \iff \left(\varphi_n, f \right) \to \left(\psi, f \right) \text{ for all } f \in L^0(G).$$

- If $S \subset L'(G)$ is convex,
 \[\text{weak-closure}(S) = \text{norm-closure}(S). \]

Approximating functions in $L^\infty(G)$ by linear combinations of characteristic functions, we deduce that
\[\forall \varphi_n \in L^\infty(G): \exists \varepsilon_n : \left(\varphi_n, f \right) \to M(\mu)^t. \]

Take $g \in G$. Then $\exists \varepsilon_n = \varepsilon_n(f, g)$:
\[\left(\varphi_n, f \right) \to M(\mu)^t, \quad \left(\varphi_n, g \cdot f \right) \to M(\mu)^t = M(\mu)^t. \]

Then
\[\left< g \cdot \varphi_n - \varphi_n, f \right> = \left< \varphi_n, \frac{g}{n} \cdot f - f \right> \to 0. \]

This shows that $0 \in \text{weak-closure}\{ g \cdot \varphi_n - \varphi_n \}$. Let $S = \text{convex-closure}\{ g \cdot \varphi_n - \varphi_n \}$. Since S is convex,
\[\text{norm-closure}(S) = \text{weak-closure}(S) \ni 0. \]

Hence, $\exists \varphi_n = \text{convex-closure}\{ \varphi_n \}$:
\[\| g \cdot \varphi_n - \varphi_n \|_1 \to 0. \]
\[\| \varphi_n \|_1 = 1. \]

Given finite $K \subset G$, we apply the same argument to $L'(G)^{\| K \|$ and $\{ g \cdot \varphi_n - \varphi_n : g \in K \}$. We deduce that $\exists \varphi_n : \| \varphi_n \| = 1$:
\[\| g \cdot \varphi_n - \varphi_n \| \to 0 \text{ for } g \in K. \]
Finally, let $\psi_n = \varphi_n^{1/2}$. Then
\[\| g \cdot \psi_n - \psi_n \|_2^2 = \sum_x |\psi_n (g^x) - \psi_n (x)|^2 \leq \sum_x |\psi_n (g^x)^2 - \psi_n (x)^2| \]
\[= \| g \cdot \psi_n - \psi_n \|_1 \rightarrow 0, \]
where we used that $|a-b|^2 \leq |a-b|^2$, $a, b \geq 0$.

\[\Leftarrow \text{ is not used below.} \]
Kazhdan property \(T \).

\(G \) - locally compact group

Def. \(G \) has property \(T \) if \(\exists \) compact \(K \subset G \): \(\varepsilon > 0 \):

for every continuous unitary representation

\(\pi : G \to U(H), H \)-Hilbert space, \(\pi \) without fixed vectors

\(\forall \psi \in H : \| \psi \| = 1 : \sup_{g \in K} \| \pi(g) \psi - \psi \| \geq \varepsilon. \)

(no almost invariant vectors)

Thm. Suppose that \(G \) is discrete/countable.

If \(G \) is amenable and has property \(T \),
then \(G \) is finite.

Consider the regular representation \(\pi : G \to L^2(G) : f \mapsto f(\cdot g^{-1} x) \), \(f \in L^2(G) \).

Since \(G \) is amenable, \(\forall \) finite \(K \subset G \): \(\exists f_n \in L^2(G) : \| f_n \| = 1 \):

\(\max_{g \in K} \| \pi(g) f_n - f_n \| \to 0. \)

Then by property \(T \), \(L^2(G) \) \(\ni \) \(G \)-fixed vector.

Hence, \(1 \in L^2(G) \) and \(G \) is finite.
Thm. $\text{SL}_n(\mathbb{R})$, $n \geq 3$, has property T.

In the proof, we use:

Spectral Theorem:

$\{U_t\}$ - one-param. subgroup of unitary operators on \mathfrak{h}.

$\dim (\mathfrak{h}) < \infty$:

$$ U_t = \sum_{i=1}^{s} e^{itu_i} P_i, \quad \sum_{i=1}^{s} P_i = \text{id} $$

where $u_i \in \mathbb{R}$ and P_i's are orthogonal projections on the eigenspaces.

$\dim (\mathfrak{h}) = \infty$:

possibly no eigenvectors,

$\exists \ P : \{\text{Borel subsets of } \mathbb{R}\} \rightarrow \{\text{orthogonal projections}\}$

6-additive map, $P_\mathbb{R} = \text{id}$.

$$ U_t = \int_{\mathbb{R}} e^{itu} dP(u) $$

Proof of Thm.

Consider $\frac{\text{SL}_2(\mathbb{R}) \times \mathbb{R}^2}{G \times A} \rightarrow \text{SL}_n(\mathbb{R})$.

Let $\pi : \text{SL}_n(\mathbb{R}) \rightarrow U(\mathfrak{h}_c)$ be a unitary representation without fixed vectors.
By the spectral theorem for $\pi(g)$,

$$\pi(a) = \int_{\mathbb{R}^2} e^{i\langle a, u \rangle} \, d\pi(u), \quad a \in A,$$

where π is a projection-valued measure on \mathbb{R}^2.

For $g \in G$ and $u \in A$,

$$\pi(g)\pi(a)\pi(g) = \pi(g^{-1}g) = \pi(g^{-1}(a))$$

$$\int_{\mathbb{R}^2} e^{i\langle a, u \rangle} \, d\pi(g^{-1}(a)u) = \int_{\mathbb{R}^2} e^{i\langle \pi(a)u, u \rangle} \, d\pi(u).$$

Hence,

$$\pi(g)\pi(u)\pi(g) = \pi((tg)(u)).$$

Let \mathcal{K} be a compact generating set of G.

Suppose that for some representations π_n, without fixed vectors, and $v_n \in \mathcal{H}_n$: $\|v_n\| = 1$, $\sup_{g \in \mathcal{K}} \|\pi(g)v_n - v_n\| \to 0$.

Consider the sequence of probability measures on \mathbb{R}^2:

$$\mu_n(B) = \langle \pi_n(B)u_n, v_n \rangle$$

for Borel $B \subset \mathbb{R}^2$.

For $g \in \mathcal{K}$,

$$|\mu_n(tgB) - \mu_n(B)| = |\langle \pi_n(B)\pi_n(g)v_n, v_n \rangle - \langle \pi_n(B)u_n, v_n \rangle| \to 0.$$
If $\mu_n(10^j) \neq 0$, then $\pi(10^j) \neq 0$ and \mathcal{H} contains a $\pi(\Lambda)$-fixed vector, but this is impossible by Moore ergodicity thm. (see Furman’s lectures)

Hence, μ_n are prob. measures on $R^2 \backslash 10^j$ and projecting $R^2 \backslash 10^j \rightarrow \mathcal{P}'$, we obtain a sequence of prob. measures μ_n on \mathcal{P}'.

Let μ be a weak* limit point μ_n.

Then μ is $SL_2(R)$-invariant.

This is impossible. Hence, $\exists \varepsilon > 0$.

for all π’s without invariant vectors and v’s with $\|v\| = 1$.

\[\text{Thm. If } \Gamma \text{ is a lattice in } G \text{ and } G \text{ has property } T, \text{ then } \Gamma \text{ has property } T.\]

In the proof we use:

Induced representation:

$\pi: \Gamma \rightarrow U(H)$ - unitary representation of Γ.

Define $\hat{\mathcal{H}} = \{ f: G \rightarrow H : f(xg) = \pi(x)f(g), \ g \in G, \ x \in \Gamma \}$

\[\|f(\cdot)\| \sum_{x \in \Gamma} \|f(x)\| < \infty\]
\[\hat{\pi}(g) : \hat{H} \rightarrow \hat{H} : f \mapsto \pi(xg). \]

Then \(\hat{\pi} : G \rightarrow \mathcal{U}(\hat{H}) \) is a unitary representation.

Proof of Thm:

For simplicity, let's assume that \(G \) is compact. Then \(\exists \) relatively compact Borel \(C \subset G : \)

\[G = \bigsqcup_{g \in C} \gamma C \quad (\text{disjoint union}) \]

\[\gamma g = \pi(g)c(g) \]

Suppose that \(\pi : \Gamma \rightarrow \mathcal{U}(\hat{H}) \) be a representation such that \(\forall \text{finite } \mathcal{S} \subset \Gamma : \exists \psi_0 \in \hat{H} : \| \psi_0 \| = 1 : \)

\[\max_{\gamma \in \mathcal{S}} \| \pi(\gamma) \psi_0 - \psi_0 \| \rightarrow 0. \]

Consider the induced representation \(\hat{\pi} : G \rightarrow \mathcal{U}(\hat{H}) \)
and \(\hat{f}_n(\gamma) = \pi(\gamma) \psi_0 \in \hat{H}, \| \hat{f}_n \| = 1. \)

Given compact \(K \subset G \), \(\exists \text{finite } \mathcal{S} \subset \Gamma : C.K \subset \mathcal{S}.C \) (since \(\Gamma \) is discrete).

Then for \(g \in K, \) \(\| \hat{\pi}(g) \hat{f}_n - \hat{f}_n \| = \sum_{\gamma \in \mathcal{S}} \| \pi(\gamma) \psi_0 - \psi_0 \| \rightarrow 0. \)

Since \(G \) has property \(T, \) \(\hat{f}_n \) is \(\Gamma \)-inv. vector:
\[f(g) = \psi_0 \in \hat{H} \text{ for a.e. } g. \]
Since \(f(\gamma g) = \pi(g)f(g), \) \(\psi_0 \) is \(\Gamma \)-inv. Hence, \(\Gamma \) has property \(T. \)
Thm. If Γ is discrete and has property T, then Γ is finitely generated.

Proof. Consider $\mathcal{H} = \mathop{\bigoplus}_{\triangle} L^2(\Gamma/\triangle)$ where \triangle runs over finitely generated subgroups.

For every finite $S \subseteq \Gamma$, $\delta_e \langle s \rangle$ is S-invariant.

Since Γ has property T, \mathcal{H} contains Γ-inv. vector.

Then $L^2(\Gamma/\triangle) \ni \Gamma$-inv. vector for some \triangle, and Γ/\triangle is finite.

Cor. If Γ is a lattice in $\text{SL}_n(\mathbb{R})$, $n \geq 3$, then Γ is finitely generated.
Margulis normal subgroup theorem.

Thm Let \(\Gamma \) be a lattice in \(G = \text{SL}(n, \mathbb{R}) \), \(n \geq 3 \), and \(N \trianglelefteq \Gamma \). Then \(|N| < \infty \) or \(|\Gamma/N| < \infty \).

Suppose that \(N \) is infinite normal subgroup in \(\Gamma \). We claim that:

1. \(\Gamma/N \) has property T \(\Rightarrow \) \(\Gamma/N \) is finite.
2. \(\Gamma/N \) is amenable \(\Rightarrow \) \(\Gamma \) has property (T) \(\Rightarrow \) \(\Gamma/N \) is amenable.

It remains to show that \(\Gamma/N \) is amenable.

Let \(V \) - locally convex top. vector space

\(\mathcal{S}_2 \) - nonempty, compact, convex

\(\Gamma \triangleright \mathcal{S}_2 \) - affine continuous action.

We need to show that \(\mathcal{S}_2 \) is \(\Gamma \)-fixed point.

Without loss of generality, \(V \) & \(\mathcal{S}_2 \) are separable.

Consider \(L^\infty(G, \mathcal{S}_2) = \{ f : G \to \mathcal{S}_2 : f(\gamma g) = f(\gamma) \cdot f(g) \} \) for \(\gamma \in \Gamma \), a.e. \(g \in G \)

equipped with weak* topology, namely topology defined by seminorms:
\[\|f\|_{L^1(G)} = \int_G |f(g)\phi(g)| \, dg \quad \forall \phi \in L^1(G) \]

(\|\cdot\|_2 are the seminorms on \(G\) defining topology).

Then \(L^\infty(G,\mathcal{S})\) is compact.

\(G\) acts continuously on \(L^\infty(G,\mathcal{S})\) by

\[f \mapsto f(x, \cdot) \]

Let \(B = \{(e, \cdot) \} \subset G\).

Since \(B\) is amenable, \(L^\infty(G,\mathcal{S})\) has \(B\)-fixed point.

Then

\[\exists \, \tilde{f} : G/B \to \mathcal{S} : \tilde{f}(y \cdot x) = y \cdot f(x) \]

for \(y \in G\), a.e. \(x \in G/B\).

\[\boxed{\text{Margulis Factor Thm.}}\]

If \(f\) is as above, \(\exists\) closed subgroup \(P \supset B\):

\[\begin{array}{cc}
G/B & \xrightarrow{gB \rightarrow gP} \\
\downarrow f & \downarrow \tilde{f} \xrightarrow{2} \\
\mathcal{S} & \xrightarrow{\tilde{f} \text{-equivariant} \, \text{measurable}} G/P
\end{array} \]

\(\uparrow \text{isomorphism}\)

i.e., every \(P\)-factor is a \(G\)-factor.
Since N acts trivially on \mathcal{S},
$N.gP = gP$ for a.e. $g \in G$, and
$P \supset \langle \tilde{g}^tN\tilde{g} : g \in G \rangle$ - infinite closed normal subgroup of G.
Hence, $P = G \Rightarrow f = \text{const}$ a.e.
In particular, \mathcal{S} has a fixed point.

Proof of factor theorem.

Consider $f : G/B \to \mathcal{S}$: $f(\gamma x) = \gamma f(x)$ for $\gamma \in \Gamma$ and a.e. $x \in G/B$.

What is \mathcal{S}?
$L^\infty(\mathcal{S}) \subset L^\infty(G/B)$
\text{a } \Gamma\text{-invariant subalgebra}

Classify $\Gamma\text{-inv. subalgebras of } L^\infty(G/B)$?

\begin{align*}
\Gamma\text{-equivariant} & \quad \text{factors} \\
\downarrow \quad 1\text{-to-1} & \\
G/B & \quad \mathcal{S}
\end{align*}

\begin{align*}
\Gamma\text{-invariant} & \quad \text{sub-}\sigma\text{-algebras} \\
\downarrow & \\
\mathcal{A} = \{ \overline{f}(A) : A \in \text{Borel}(\mathcal{S}) \} & \\
f & \quad \mathcal{B} = \text{Borel}(G/B)
\end{align*}
Thm. Every Γ-invariant sub-σ-algebra A of $B = \text{Borel}(G)$ is G-invariant.

Lem. 1. Every G-inv. sub-σ-algebra A of $\text{Borel}(G)$ is

$$A = \{ \overline{\pi^{-1}(A)} : A \in \text{Borel}(G/P) \} \quad (*)$$

where $\pi : G \to G/P$ and P is a closed subgroup.

$L = L^\infty(G, A)$ - the space of bounded A-measurable functions. We equip $L^\infty(G)$ with the topology of convergence in measure, that is, the open sets are of the form:

$$\{ f : m(\{ x \in C : |f(x) - f(y)| < \varepsilon \}) < \delta \}, \quad C \in \text{G-finite measure}$$

Let $L_0 = L \cap L^\infty(G)$. Then we check that:

- L is closed in $L^\infty(G)$,
- $C_c(G) * L \subseteq L_0$,
- L_0 is dense in L.

We set $P_x = \{ g \in G : f(xg) = f(x) \text{ for all } f \in L_0 \}$.

Since A is G-invariant, P_x is independent of x.

Since A is G-invariant, P_x can be considered as a subalgebra of $C(G/P)$, which separates points. Hence, $L_0 = C(G/P)$ by the Stone-Weierstrass theorem, and (*) holds.
For simplicity, \(G = \mathrm{SL}(3, \mathbb{R}) \).

Up to measure zero,
\[
G/B = U = \left\{ \begin{pmatrix} u_1 & 0 \\ u_3 & u_2 \end{pmatrix} : u_i \in \mathbb{R} \right\}
\]

Intermediate subgroups:
\[
P_1 = \begin{pmatrix} X & 0 \\ 0 & X \end{pmatrix}, \quad P_2 = \begin{pmatrix} X & 0 \\ 0 & X \end{pmatrix}
\]
\[
U = V \cdot W, \quad V = \begin{pmatrix} 0 & 1 \\ X & 0 \end{pmatrix}, \quad W = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

\(\mathcal{G} \)-factors:
\[
\begin{array}{ccc}
\pi_1 & \downarrow & \pi_2 \\
G/B & \to & G/P_1 \\
G/P_1 & \to & G/P_2
\end{array}
\]

\(\mathcal{B}_1, \mathcal{B}_2 \subset \mathcal{B} \) — corresponding \(\sigma \)-algebras.

Convergence in measure:
\[
A_n \to A \iff \lim \frac{|(A_n \cap A) \cap B|}{|B|} = 0 \quad \text{for every ball in } U.
\]

\(A \) is closed under convergence in measure.

Example: \(A \subset \mathbb{R}^d \), for a.e. \(a \in A \),
\[
\lim_{r \to \infty} \frac{r(A-a)}{r} = \begin{cases} \mathbb{R}^d & a \in A \\ \emptyset & a \notin A \end{cases}
\]

Indeed, for a.e. \(a \in A \),
\[
|\frac{1}{r}(A-a) \cap B| = \lim_{r \to \infty} \frac{|A \cap a + \frac{1}{r}B|}{|B|} \to |B|
\]
by the Lebesgue density lemma,
and the same holds for \(A^c \).
\[\text{We set: } a_r = \begin{pmatrix} z^{-1/3} & 0 & 0 \\ 0 & z^{-1/3} & 0 \\ 0 & 0 & z^{1/3} \end{pmatrix}, \quad V = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}. \]

\[a_r : G_B \rightarrow G_B : (v, w) \mapsto (z^{-1/3} v, w). \]

As in the example:

Lem. 2. For every Borel \(A \subset G_B \sim U \) and a.e. \(v e V \)

\[a_r (v^* A) \xrightarrow{r \to \infty} V \cdot A_v, \]

where \(A_v = \{ w e W : (v, w) e A \} \).

Lem. 3. For a.e. \(v e V \), \(\{ v a_r^{-1} \}_{r \geq 1} = G \).

We know by Moore's ergodicity Thm, that \(\{ a_r \} \) act ergodically on \(r \backslash G \).

This implies that for a.e. \(g e G \),

\[\{ g a_r^{-1} \}_{r \geq 1} = G. \]

A.e. \(g = v \cdot p \) where \(v e V \) and \(p e P \).

Then \(g a_r^{-1} = v a_r^{-1} (a_r p a_r^{-1}) \), where
\[
\alpha_r \rho a_r^{-1} = \begin{pmatrix}
\rho_1 & \rho_2 \\
\rho_2 & \rho_3 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
\rho_1 & \rho_2 \\
\rho_2 & \rho_3 \\
0 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
\infty & 0 \\
0 & \rho_3
\end{pmatrix}, \quad r \rightarrow \infty.
\]

Hence, \(\{ \Gamma \nu a_r^{-1} \}_{r=1} = G \iff \{ \Gamma \rho a_r^{-1} \}_{r=1} = G. \)

Proof of Thm.

1) Suppose that \(A \subset B_1. \)

Then \(\exists A \in A \) with nontrivial \(A_v \)
(i.e., \(|A_v| \neq 0 \) and \(|A_v| \neq 0 \)),
for \(v \in \) positive measure set in \(V. \)

By Lem. 2 and Lem. 3,
we can pick this \(v \) so that
\(\{ \Gamma \nu a_r^{-1} \}_{r=1} = G, \)

\(a_r (\nu^{-1} A) \rightarrow V \cdot A \nu = \tilde{A}. \)

Note that \(\tilde{A} \) is nontrivial.

Then \(\forall g \in G: g_n = \nu^{-1} \rightarrow g \) for \(n \rightarrow \infty. \)

We have \(g_n a_r \nu^{-1}. A = \tilde{f}_n A \in A. \)

Hence, \(g \tilde{A} \in A \) for all \(g \in G. \)

This shows that \(A \supset \) nontrivial \(G \)-inv. sub-\(\sigma \)-algebra \(= B. \)

Thus, \(B_2 \subset A. \)
2) Similar argument shows that
\[a \notin B_2 \implies B_1 \subset A. \]

3) Either:
\[a \in B_1, a \notin B_2 \implies a \in B, B \cap B_2 = \{ \emptyset, \emptyset \} \]
\[a \in B_1, a \in B_2 \implies B_1 \subset a \implies a = B_1 \]
\[a \notin B_1, a \in B_2 \implies B_2 \subset a \implies a = B_2 \]
\[a \notin B_1, a \notin B_2 \implies B_2 \subset a, B_1 \subset a \implies a = B. \]